Laboratory of Experimental Hematology, University of Antwerp, Belgium.
Cell Transplant. 2011;20(6):851-69. doi: 10.3727/096368910X543411. Epub 2010 Nov 19.
While neural stem cells (NSCs) are widely expected to become a therapeutic agent for treatment of severe injuries to the central nervous system (CNS), currently there are only few detailed preclinical studies linking cell fate with experimental outcome. In this study, we aimed to validate whether IV administration of allogeneic NSC can improve experimental autoimmune encephalomyelitis (EAE), a well-established animal model for human multiple sclerosis (MS). For this, we cultured adherently growing luciferase-expressing NSCs (NSC-Luc), which displayed a uniform morphology and expression profile of membrane and intracellular markers, and which displayed an in vitro differentiation potential into neurons and astrocytes. Following labeling with green fluorescent micron-sized iron oxide particles (f-MPIO-labeled NSC-Luc) or lentiviral transduction with the enhanced green fluorescent protein (eGFP) reporter gene (NSC-Luc/eGFP), cell implantation experiments demonstrated the intrinsic survival capacity of adherently cultured NSC in the CNS of syngeneic mice, as analyzed by real-time bioluminescence imaging (BLI), magnetic resonance imaging (MRI), and histological analysis. Next, EAE was induced in C57BL/6 mice followed by IV administration of NSC-Luc/eGFP at day 7 postinduction with or without daily immunosuppressive therapy (cyclosporine A, CsA). During a follow-up period of 20 days, the observed clinical benefit could be attributed solely to CsA treatment. In addition, histological analysis demonstrated the absence of NSC-Luc/eGFP at sites of neuroinflammation. In order to investigate the absence of therapeutic potential, BLI biodistribution analysis of IV-administered NSC-Luc/eGFP revealed cell retention in lung capillaries as soon as 1-min postinjection, resulting in massive inflammation and apoptosis in lung tissue. In summary, we conclude that IV administration of NSCs currently has limited or no therapeutic potential for neuroinflammatory disease in mice, and presumably also for human MS. However, given the fact that grafted NSCs have an intrinsic survival capacity in the CNS, their therapeutic exploitation should be further investigated, and-in contrast to several other reports-will most likely be highly complex.
虽然神经干细胞 (NSC) 被广泛认为是治疗中枢神经系统 (CNS) 严重损伤的治疗剂,但目前只有少数详细的临床前研究将细胞命运与实验结果联系起来。在这项研究中,我们旨在验证同种异体 NSC 的静脉内给药是否可以改善实验性自身免疫性脑脊髓炎 (EAE),这是一种用于人类多发性硬化症 (MS) 的成熟动物模型。为此,我们培养了贴壁生长的荧光素酶表达 NSC(NSC-Luc),其具有均匀的形态和膜和细胞内标志物的表达谱,并且具有体外分化为神经元和星形胶质细胞的潜力。在用绿色荧光微球氧化铁颗粒(f-MPIO 标记的 NSC-Luc)或增强型绿色荧光蛋白(eGFP)报告基因转导(NSC-Luc/eGFP)标记后,细胞植入实验通过实时生物发光成像(BLI)、磁共振成像(MRI)和组织学分析证明了贴壁培养的 NSC 在同种异体小鼠中枢神经系统中的内在存活能力。接下来,在诱导后第 7 天,在 EAE 诱导后,在或不在每日免疫抑制治疗(环孢素 A,CsA)的情况下,将 NSC-Luc/eGFP 静脉内给药。在 20 天的随访期间,观察到的临床益处仅归因于 CsA 治疗。此外,组织学分析表明在神经炎症部位不存在 NSC-Luc/eGFP。为了研究缺乏治疗潜力,静脉内给予的 NSC-Luc/eGFP 的 BLI 生物分布分析表明,在注射后 1 分钟内,细胞保留在肺毛细血管中,导致肺组织中大量炎症和细胞凋亡。总之,我们得出结论,目前静脉内给予 NSC 对小鼠的神经炎症性疾病几乎没有或没有治疗潜力,推测对人类 MS 也没有治疗潜力。然而,鉴于移植的 NSC 具有在中枢神经系统中的内在存活能力,应进一步研究其治疗利用,并且-与其他几份报告相反-很可能非常复杂。
Cell Transplant. 2012-3-28
Artif Cells Blood Substit Immobil Biotechnol. 2007
Front Neurosci. 2019-1-11
Stem Cell Res Ther. 2015-12-14
Curr Stem Cell Res Ther. 2016