Suppr超能文献

偶尔的后推如何加速进行性运动蛋白的运动。

How occasional backstepping can speed up a processive motor protein.

作者信息

Bier Martin, Cao Francisco J

机构信息

Department of Physics, East Carolina University, Greenville, NC 27858, USA.

出版信息

Biosystems. 2011 Mar;103(3):355-9. doi: 10.1016/j.biosystems.2010.11.005. Epub 2010 Nov 18.

Abstract

Fueled by the hydrolysis of ATP, the motor protein kinesin literally walks on two legs along the biopolymer microtubule. The number of accidental backsteps that kinesin takes appears to be much larger than what one would expect given the amount of free energy that ATP hydrolysis makes available. This indicates that backsteps are not simply the forward stepping cycle run backwards. We propose here a simple effective model that consistently includes the backstep transition. Using this model, we show how more backstepping increases the entropy of the final state, and probably also the activation state, thus reducing their free energy. This free energy reduction of the activation state (related to backstepping) speeds up the catalytic cycle of the kinesin, making both forward and backward steps more frequent. As a consequence, maximal net forward speed is achieved at nonzero backstep percentage. In addition, the optimal backstep percentage coincides with the backstep percentage measured for kinesin. This result suggests that, through natural selection, kinesin could have evolved to maximal speed.

摘要

在ATP水解的驱动下,驱动蛋白这种运动蛋白实际上沿着生物聚合物微管“双腿”行走。驱动蛋白发生的意外后退步数似乎比根据ATP水解可提供的自由能所预期的要多得多。这表明后退步并非简单地是向前步进循环的逆向运行。我们在此提出一个简单有效的模型,该模型始终包含后退步转变。使用这个模型,我们展示了更多的后退步如何增加最终状态的熵,可能也增加了活化状态的熵,从而降低它们的自由能。活化状态(与后退步相关)的这种自由能降低加速了驱动蛋白的催化循环,使向前和向后的步都更频繁。因此,在非零后退步百分比时可实现最大净前进速度。此外,最佳后退步百分比与为驱动蛋白测量的后退步百分比一致。这一结果表明,通过自然选择,驱动蛋白可能已经进化到最大速度。

相似文献

1
How occasional backstepping can speed up a processive motor protein.
Biosystems. 2011 Mar;103(3):355-9. doi: 10.1016/j.biosystems.2010.11.005. Epub 2010 Nov 18.
2
Kinesin's backsteps under mechanical load.
Phys Chem Chem Phys. 2009 Jun 28;11(24):4899-910. doi: 10.1039/b903536b. Epub 2009 May 18.
3
Backstepping Mechanism of Kinesin-1.
Biophys J. 2020 Nov 17;119(10):1984-1994. doi: 10.1016/j.bpj.2020.09.034. Epub 2020 Oct 6.
4
Kinesin: a molecular motor with a spring in its step.
Proc Biol Sci. 2002 Nov 22;269(1507):2363-71. doi: 10.1098/rspb.2002.2117.
5
Mechanics of the kinesin step.
Nature. 2005 May 19;435(7040):308-12. doi: 10.1038/nature03528.
6
7
A universal pathway for kinesin stepping.
Nat Struct Mol Biol. 2011 Aug 14;18(9):1020-7. doi: 10.1038/nsmb.2104.
8
A mathematical model describing the mechanical kinetics of kinesin stepping.
Bioinformatics. 2014 Feb 1;30(3):353-9. doi: 10.1093/bioinformatics/btt698. Epub 2013 Nov 30.
9
Entropy rectifies the Brownian steps of kinesin.
Nat Chem Biol. 2005 Nov;1(6):342-7. doi: 10.1038/nchembio741. Epub 2005 Oct 9.
10
Kinesin walks hand-over-hand.
Science. 2004 Jan 30;303(5658):676-8. doi: 10.1126/science.1093753. Epub 2003 Dec 18.

引用本文的文献

1
Dynamic catch-bonding generates the large stall forces of cytoplasmic dynein.
Phys Biol. 2020 Jun 19;17(4):046004. doi: 10.1088/1478-3975/ab907d.
2
Effects of Obstacles on the Dynamics of Kinesins, Including Velocity and Run Length, Predicted by a Model of Two Dimensional Motion.
PLoS One. 2016 Jan 25;11(1):e0147676. doi: 10.1371/journal.pone.0147676. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验