Suppr超能文献

大脑和神经及精神疾病易感性中性别差异的遗传和表观遗传基础。

Genetic and epigenetic underpinnings of sex differences in the brain and in neurological and psychiatric disease susceptibility.

机构信息

Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.

出版信息

Prog Brain Res. 2010;186:77-95. doi: 10.1016/B978-0-444-53630-3.00006-3.

Abstract

There are numerous examples of sex differences in brain and behavior and in susceptibility to a broad range of brain diseases. For example, gene expression is sexually dimorphic during brain development, adult life, and aging. These differences are orchestrated by the interplay between genetic, hormonal, and environmental influences. However, the molecular mechanisms that underpin these differences have not been fully elucidated. Because recent studies have highlighted the key roles played by epigenetic processes in regulating gene expression and mediating brain form and function, this chapter reviews emerging evidence that shows how epigenetic mechanisms including DNA methylation, histone modifications, and chromatin remodeling, and non-coding RNAs (ncRNAs) are responsible for promoting sexual dimorphism in the brain. Differential profiles of DNA methylation and histone modifications are found in dimorphic brain regions such as the hypothalamus as a result of sex hormone exposure during developmental critical periods. The elaboration of specific epigenetic marks is also linked with regulating sex hormone signaling pathways later in life. Furthermore, the expression and function of epigenetic factors such as the methyl-CpG-binding protein, MeCP2, and the histone-modifying enzymes, UTX and UTY, are sexually dimorphic in the brain. ncRNAs are also implicated in promoting sex differences. For example, X inactivation-specific transcript (XIST) is a long ncRNA that mediates X chromosome inactivation, a seminal developmental process that is particularly important in brain. These observations imply that understanding epigenetic mechanisms, which regulate dimorphic gene expression and function, is necessary for developing a more comprehensive view of sex differences in brain. These emerging findings also suggest that epigenetic mechanisms are, in part, responsible for the differential susceptibility between males and females that is characteristic of a spectrum of neurological and psychiatric disorders.

摘要

大脑和行为以及对广泛的大脑疾病的易感性存在许多性别差异的例子。例如,在大脑发育、成年期和衰老过程中,基因表达存在性别二态性。这些差异是由遗传、激素和环境影响的相互作用协调的。然而,支持这些差异的分子机制尚未完全阐明。由于最近的研究强调了表观遗传过程在调节基因表达和介导大脑形态和功能方面的关键作用,本章综述了新出现的证据,表明表观遗传机制如何包括 DNA 甲基化、组蛋白修饰和染色质重塑以及非编码 RNA(ncRNAs) 负责促进大脑中的性别二态性。在发育关键期暴露于性激素后,在性别二态性脑区如下丘脑发现 DNA 甲基化和组蛋白修饰的差异图谱。特定表观遗传标记的精细化也与调节生命后期的性激素信号通路有关。此外,甲基化-CpG 结合蛋白 MeCP2 和组蛋白修饰酶 UTX 和 UTY 等表观遗传因子的表达和功能在大脑中也存在性别二态性。ncRNAs 也参与促进性别差异。例如,X 失活特异性转录物(XIST)是一种长 ncRNA,可介导 X 染色体失活,这是一个重要的发育过程,在大脑中尤为重要。这些观察结果表明,了解调节性别二态性基因表达和功能的表观遗传机制对于全面了解大脑中的性别差异是必要的。这些新发现还表明,表观遗传机制部分负责神经和精神疾病谱中男性和女性之间差异易感性的特征。

相似文献

2
Post-translational histone modifications and their interaction with sex influence normal brain development and elaboration of neuropsychiatric disorders.
Biochim Biophys Acta Mol Basis Dis. 2019 Aug 1;1865(8):1968-1981. doi: 10.1016/j.bbadis.2018.10.016. Epub 2018 Oct 10.
3
Reversible histone methylation regulates brain gene expression and behavior.
Horm Behav. 2011 Mar;59(3):383-92. doi: 10.1016/j.yhbeh.2010.08.019. Epub 2010 Sep 15.
4
Sex differences in epigenetic mechanisms may underlie risk and resilience for mental health disorders.
Epigenetics. 2011 Jul;6(7):857-61. doi: 10.4161/epi.6.7.16517. Epub 2011 Jul 1.
5
Epigenetic control.
J Cell Physiol. 2009 May;219(2):243-50. doi: 10.1002/jcp.21678.
6
Sex-specific differences in expression of histone demethylases Utx and Uty in mouse brain and neurons.
J Neurosci. 2008 Apr 23;28(17):4521-7. doi: 10.1523/JNEUROSCI.5382-07.2008.
7
Epigenetic regulation in human melanoma: past and future.
Epigenetics. 2015;10(2):103-21. doi: 10.1080/15592294.2014.1003746.
8
Chromatin-bound RNA and the neurobiology of psychiatric disease.
Neuroscience. 2014 Apr 4;264:131-41. doi: 10.1016/j.neuroscience.2013.06.051. Epub 2013 Jul 3.
9
Epigenomics in stress tolerance of plants under the climate change.
Mol Biol Rep. 2023 Jul;50(7):6201-6216. doi: 10.1007/s11033-023-08539-6. Epub 2023 Jun 9.
10
Signals and combinatorial functions of histone modifications.
Annu Rev Biochem. 2011;80:473-99. doi: 10.1146/annurev-biochem-061809-175347.

引用本文的文献

1
The impact of sex on memory during aging and Alzheimer's disease progression: Epigenetic mechanisms.
J Alzheimers Dis. 2024 Dec;102(3):562-576. doi: 10.1177/13872877241288709. Epub 2024 Nov 14.
2
Unraveling the complexity of human brain: Structure, function in healthy and disease states.
Ageing Res Rev. 2024 Sep;100:102414. doi: 10.1016/j.arr.2024.102414. Epub 2024 Jul 15.
5
Sex-Biased Expression and Response of microRNAs in Neurological Diseases and Neurotrauma.
Int J Mol Sci. 2024 Feb 24;25(5):2648. doi: 10.3390/ijms25052648.
7
Low-Dose Chidamide Treatment Displays Sex-Specific Differences in the 3xTg-AD Mouse.
Biomolecules. 2023 Aug 29;13(9):1324. doi: 10.3390/biom13091324.
8
A higher dysregulation burden of brain DNA methylation in female patients implicated in the sex bias of Schizophrenia.
Mol Psychiatry. 2023 Nov;28(11):4842-4852. doi: 10.1038/s41380-023-02243-4. Epub 2023 Sep 11.
10
Genetic and Epigenetic Sexual Dimorphism of Brain Cells during Aging.
Brain Sci. 2023 Jan 24;13(2):195. doi: 10.3390/brainsci13020195.

本文引用的文献

1
Amyloid beta precursor protein regulates male sexual behavior.
J Neurosci. 2010 Jul 28;30(30):9967-72. doi: 10.1523/JNEUROSCI.1988-10.2010.
2
Parent-of-origin effects at the major histocompatibility complex in multiple sclerosis.
Hum Mol Genet. 2010 Sep 15;19(18):3679-89. doi: 10.1093/hmg/ddq282. Epub 2010 Jul 15.
3
Epigenetic setting for long-term expression of estrogen receptor α and androgen receptor in cells.
Horm Behav. 2011 Mar;59(3):345-52. doi: 10.1016/j.yhbeh.2010.05.018. Epub 2010 Jul 7.
4
Sex-specific parent-of-origin allelic expression in the mouse brain.
Science. 2010 Aug 6;329(5992):682-5. doi: 10.1126/science.1190831. Epub 2010 Jul 8.
5
High-resolution analysis of parent-of-origin allelic expression in the mouse brain.
Science. 2010 Aug 6;329(5992):643-8. doi: 10.1126/science.1190830. Epub 2010 Jul 8.
6
Testosterone-induced upregulation of miRNAs in the female mouse liver.
Steroids. 2010 Dec;75(12):998-1004. doi: 10.1016/j.steroids.2010.06.010. Epub 2010 Jul 1.
7
Strong purifying selection at genes escaping X chromosome inactivation.
Mol Biol Evol. 2010 Nov;27(11):2446-50. doi: 10.1093/molbev/msq143. Epub 2010 Jun 9.
8
Cortical DNA methylation maintains remote memory.
Nat Neurosci. 2010 Jun;13(6):664-6. doi: 10.1038/nn.2560. Epub 2010 May 23.
9
Sex-specificity in transgenerational epigenetic programming.
Horm Behav. 2011 Mar;59(3):290-5. doi: 10.1016/j.yhbeh.2010.05.004. Epub 2010 May 17.
10
Sex-specific radiation-induced microRNAome responses in the hippocampus, cerebellum and frontal cortex in a mouse model.
Mutat Res. 2011 Jun 17;722(2):114-8. doi: 10.1016/j.mrgentox.2010.05.007. Epub 2010 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验