Suppr超能文献

针对艰难梭菌毒力因子TcdB的抑制剂和基于活性的探针的合理设计。

Rational design of inhibitors and activity-based probes targeting Clostridium difficile virulence factor TcdB.

作者信息

Puri Aaron W, Lupardus Patrick J, Deu Edgar, Albrow Victoria E, Garcia K Christopher, Bogyo Matthew, Shen Aimee

机构信息

Department of Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA.

出版信息

Chem Biol. 2010 Nov 24;17(11):1201-11. doi: 10.1016/j.chembiol.2010.09.011.

Abstract

Clostridium difficile is a leading cause of nosocomial infections. The major virulence factors of this pathogen are the multi-domain toxins TcdA and TcdB. These toxins contain a cysteine protease domain (CPD) that autoproteolytically releases a cytotoxic effector domain upon binding intracellular inositol hexakisphosphate. Currently, there are no known inhibitors of this protease. Here, we describe the rational design of covalent small molecule inhibitors of TcdB CPD. We identified compounds that inactivate TcdB holotoxin function in cells and solved the structure of inhibitor-bound protease to 2.0 Å. This structure reveals the molecular basis of CPD substrate recognition and informed the synthesis of activity-based probes for this enzyme. The inhibitors presented will guide the development of therapeutics targeting C. difficile, and the probes will serve as tools for studying the unique activation mechanism of bacterial toxin CPDs.

摘要

艰难梭菌是医院感染的主要病因。该病原体的主要毒力因子是多结构域毒素TcdA和TcdB。这些毒素含有一个半胱氨酸蛋白酶结构域(CPD),该结构域在与细胞内肌醇六磷酸结合后会自蛋白水解释放出一个细胞毒性效应结构域。目前,尚无已知的该蛋白酶抑制剂。在此,我们描述了TcdB CPD共价小分子抑制剂的合理设计。我们鉴定出了能使细胞中TcdB全毒素功能失活的化合物,并将抑制剂结合蛋白酶的结构解析至2.0 Å。该结构揭示了CPD底物识别的分子基础,并为该酶的基于活性的探针的合成提供了依据。所展示的抑制剂将指导针对艰难梭菌的治疗药物的开发,而这些探针将作为研究细菌毒素CPD独特激活机制的工具。

相似文献

1
Rational design of inhibitors and activity-based probes targeting Clostridium difficile virulence factor TcdB.
Chem Biol. 2010 Nov 24;17(11):1201-11. doi: 10.1016/j.chembiol.2010.09.011.
2
Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins.
Nat Struct Mol Biol. 2011 Mar;18(3):364-71. doi: 10.1038/nsmb.1990. Epub 2011 Feb 13.
3
Inhibition of Clostridium difficile TcdA and TcdB toxins with transition state analogues.
Nat Commun. 2021 Nov 1;12(1):6285. doi: 10.1038/s41467-021-26580-6.
4
Masking autoprocessing of Clostridium difficile toxin A by the C-terminus combined repetitive oligo peptides.
Biochem Biophys Res Commun. 2015 Apr 3;459(2):259-263. doi: 10.1016/j.bbrc.2015.02.095. Epub 2015 Feb 26.
5
Selection and characterization of ultrahigh potency designed ankyrin repeat protein inhibitors of C. difficile toxin B.
PLoS Biol. 2019 Jun 24;17(6):e3000311. doi: 10.1371/journal.pbio.3000311. eCollection 2019 Jun.
6
Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate.
J Biol Chem. 2009 Feb 6;284(6):3389-95. doi: 10.1074/jbc.M806002200. Epub 2008 Dec 1.
8
Functional defects in TcdB toxin uptake identify CSPG4 receptor-binding determinants.
J Biol Chem. 2017 Oct 20;292(42):17290-17301. doi: 10.1074/jbc.M117.806687. Epub 2017 Aug 23.
9
Small-Molecule Allosteric Triggers of Clostridium difficile Toxin B Auto-proteolysis as a Therapeutic Strategy.
Cell Chem Biol. 2019 Jan 17;26(1):17-26.e13. doi: 10.1016/j.chembiol.2018.10.002. Epub 2018 Oct 25.
10
Cysteine Protease-Mediated Autocleavage of Toxins Regulates Their Proinflammatory Activity.
Cell Mol Gastroenterol Hepatol. 2018 Feb 9;5(4):611-625. doi: 10.1016/j.jcmgh.2018.01.022. eCollection 2018.

引用本文的文献

1
Allosterically switchable network orients -flap in toxins.
Proc Natl Acad Sci U S A. 2025 Apr 8;122(14):e2419263122. doi: 10.1073/pnas.2419263122. Epub 2025 Apr 2.
2
Metagenome diversity illuminates the origins of pathogen effectors.
mBio. 2024 May 8;15(5):e0075923. doi: 10.1128/mbio.00759-23. Epub 2024 Apr 2.
3
An Updated View on the Cellular Uptake and Mode-of-Action of Clostridioides difficile Toxins.
Adv Exp Med Biol. 2024;1435:219-247. doi: 10.1007/978-3-031-42108-2_11.
4
Development of Oxadiazolone Activity-Based Probes Targeting FphE for Specific Detection of Infections.
bioRxiv. 2023 Dec 12:2023.12.11.571116. doi: 10.1101/2023.12.11.571116.
5
Metagenome diversity illuminates origins of pathogen effectors.
bioRxiv. 2023 Feb 27:2023.02.26.530123. doi: 10.1101/2023.02.26.530123.
6
The Spp. Type III Effector Protein OspB Is a Cysteine Protease.
mBio. 2022 Jun 28;13(3):e0127022. doi: 10.1128/mbio.01270-22. Epub 2022 May 31.
7
8
Exotoxin-Targeted Drug Modalities as Antibiotic Alternatives.
ACS Infect Dis. 2022 Mar 11;8(3):433-456. doi: 10.1021/acsinfecdis.1c00296. Epub 2022 Jan 31.
9
Large Clostridial Toxins: Mechanisms and Roles in Disease.
Microbiol Mol Biol Rev. 2021 Aug 18;85(3):e0006421. doi: 10.1128/MMBR.00064-21. Epub 2021 Jun 2.
10
Structure of the full-length Clostridium difficile toxin B.
Nat Struct Mol Biol. 2019 Aug;26(8):712-719. doi: 10.1038/s41594-019-0268-0. Epub 2019 Jul 15.

本文引用的文献

1
Inositol hexakisphosphate-induced autoprocessing of large bacterial protein toxins.
PLoS Pathog. 2010 Jul 8;6(7):e1000942. doi: 10.1371/journal.ppat.1000942.
2
Structural organization of the functional domains of Clostridium difficile toxins A and B.
Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13467-72. doi: 10.1073/pnas.1002199107. Epub 2010 Jul 12.
3
Allosteric regulation of protease activity by small molecules.
Mol Biosyst. 2010 Aug;6(8):1431-43. doi: 10.1039/c003913f. Epub 2010 Jun 10.
4
Aminopeptidase fingerprints, an integrated approach for identification of good substrates and optimal inhibitors.
J Biol Chem. 2010 Jan 29;285(5):3310-8. doi: 10.1074/jbc.M109.060418. Epub 2009 Nov 30.
5
Structural and molecular mechanism for autoprocessing of MARTX toxin of Vibrio cholerae at multiple sites.
J Biol Chem. 2009 Sep 25;284(39):26557-68. doi: 10.1074/jbc.M109.025510. Epub 2009 Jul 20.
6
Using small molecules to dissect mechanisms of microbial pathogenesis.
ACS Chem Biol. 2009 Aug 21;4(8):603-16. doi: 10.1021/cb9001409.
7
Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in Clostridium difficile toxin A.
J Biol Chem. 2009 Aug 14;284(33):21934-21940. doi: 10.1074/jbc.M109.018929. Epub 2009 Jun 24.
8
Clostridium difficile infection: new developments in epidemiology and pathogenesis.
Nat Rev Microbiol. 2009 Jul;7(7):526-36. doi: 10.1038/nrmicro2164.
9
Bacterial toxins: an overview on bacterial proteases and their action as virulence factors.
Mini Rev Med Chem. 2009 Jun;9(7):820-8. doi: 10.2174/138955709788452603.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验