Suppr超能文献

利用主成分分析和向量旋转从高光谱舌图像中早期检测疾病导向状态。

Early detection of disease-oriented state from hyperspectral tongue images with principal component analysis and vector rotation.

作者信息

Yamamoto Satoshi, Tsumura Norimichi, Ogawa-Ochiai Keiko, Nakaguchi Toshiya, Kasahara Yuji, Namiki Takao, Miyake Yoichi

机构信息

Department of Japanese-Oriental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, JAPAN.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3025-8. doi: 10.1109/IEMBS.2010.5626147.

Abstract

In this article, we propose an effective colorprocessing algorithm to analyze the hyperspectral image of the tongue and its application to preventive medicine by the concept of Japanese traditional herbal medicine (Kampo medicine). Kampo medicine contains a number of concepts useful for preventive medicine such as "Mibyou" - disease-oriented state - signs of abnormalities. Hyperspectral images of the tongue were taken with the system with an integrating sphere, and tongue area without coating was eliminated automatically. Then, spectral information of the tongue area without coating was analyzed by principal component analysis, and the component vector best representing the clinical symptom was found by rotating the vector on a plane spanned by two arbitrary principal component vectors.

摘要

在本文中,我们提出了一种有效的颜色处理算法,用于分析舌头的高光谱图像,并通过日本传统草药医学(汉方医学)的概念将其应用于预防医学。汉方医学包含许多对预防医学有用的概念,如“未病”——以疾病为导向的状态——异常体征。使用带有积分球的系统拍摄舌头的高光谱图像,并自动消除有舌苔的舌头区域。然后,通过主成分分析对无舌苔的舌头区域的光谱信息进行分析,并通过在由两个任意主成分向量所跨越的平面上旋转向量,找到最能代表临床症状的成分向量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验