Suppr超能文献

用于增强头颈部癌症检测与诊断的高光谱成像及计算机辅助诊断方法的进展

Advancements in Hyperspectral Imaging and Computer-Aided Diagnostic Methods for the Enhanced Detection and Diagnosis of Head and Neck Cancer.

作者信息

Wu I-Chen, Chen Yen-Chun, Karmakar Riya, Mukundan Arvind, Gabriel Gahiga, Wang Chih-Chiang, Wang Hsiang-Chen

机构信息

Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzyou 1st Rd., Sanmin Dist., Kaohsiung City 80756, Taiwan.

Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Tzyou 1st Rd., Sanmin Dist., Kaohsiung City 80756, Taiwan.

出版信息

Biomedicines. 2024 Oct 11;12(10):2315. doi: 10.3390/biomedicines12102315.

Abstract

Head and neck cancer (HNC), predominantly squamous cell carcinoma (SCC), presents a significant global health burden. Conventional diagnostic approaches often face challenges in terms of achieving early detection and accurate diagnosis. This review examines recent advancements in hyperspectral imaging (HSI), integrated with computer-aided diagnostic (CAD) techniques, to enhance HNC detection and diagnosis. A systematic review of seven rigorously selected studies was performed. We focused on CAD algorithms, such as convolutional neural networks (CNNs), support vector machines (SVMs), and linear discriminant analysis (LDA). These are applicable to the hyperspectral imaging of HNC tissues. The meta-analysis findings indicate that LDA surpasses other algorithms, achieving an accuracy of 92%, sensitivity of 91%, and specificity of 93%. CNNs exhibit moderate performance, with an accuracy of 82%, sensitivity of 77%, and specificity of 86%. SVMs demonstrate the lowest performance, with an accuracy of 76% and sensitivity of 48%, but maintain a high specificity level at 89%. Additionally, in vivo studies demonstrate superior performance when compared to ex vivo studies, reporting higher accuracy (81%), sensitivity (83%), and specificity (79%). Despite these promising findings, challenges persist, such as HSI's sensitivity to external conditions, the need for high-resolution and high-speed imaging, and the lack of comprehensive spectral databases. Future research should emphasize dimensionality reduction techniques, the integration of multiple machine learning models, and the development of extensive spectral libraries to enhance HSI's clinical utility in HNC diagnostics. This review underscores the transformative potential of HSI and CAD techniques in revolutionizing HNC diagnostics, facilitating more accurate and earlier detection, and improving patient outcomes.

摘要

头颈癌(HNC),主要是鳞状细胞癌(SCC),是一个重大的全球健康负担。传统的诊断方法在实现早期检测和准确诊断方面常常面临挑战。本综述探讨了高光谱成像(HSI)与计算机辅助诊断(CAD)技术相结合的最新进展,以加强对头颈癌的检测和诊断。我们对七项经过严格筛选的研究进行了系统综述。我们重点关注了CAD算法,如卷积神经网络(CNN)、支持向量机(SVM)和线性判别分析(LDA)。这些算法适用于头颈癌组织的高光谱成像。荟萃分析结果表明,LDA优于其他算法,准确率达到92%,灵敏度为91%,特异性为93%。CNN表现出中等性能,准确率为82%,灵敏度为77%,特异性为86%。SVM的性能最低,准确率为76%,灵敏度为48%,但特异性保持在较高水平,为89%。此外,体内研究与体外研究相比表现出更优的性能,报告的准确率更高(81%)、灵敏度更高(83%)和特异性更高(79%)。尽管有这些有前景的发现,但挑战依然存在,例如HSI对外部条件的敏感性、对高分辨率和高速成像的需求,以及缺乏全面的光谱数据库。未来的研究应强调降维技术、多种机器学习模型的整合,以及开发广泛的光谱库,以提高HSI在头颈癌诊断中的临床效用。本综述强调了HSI和CAD技术在彻底改变头颈癌诊断方面的变革潜力,有助于更准确和早期的检测,并改善患者的治疗结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2b8/11504349/80acda2a6bd2/biomedicines-12-02315-g001.jpg

相似文献

4
Tumor Margin Classification of Head and Neck Cancer Using Hyperspectral Imaging and Convolutional Neural Networks.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10576. doi: 10.1117/12.2293167. Epub 2018 Mar 12.
5
Optical Biopsy of Head and Neck Cancer Using Hyperspectral Imaging and Convolutional Neural Networks.
Proc SPIE Int Soc Opt Eng. 2018 Jan-Feb;10469. doi: 10.1117/12.2289023. Epub 2018 Feb 12.
7
Hyperspectral imaging for head and neck cancer detection: specular glare and variance of the tumor margin in surgical specimens.
J Med Imaging (Bellingham). 2019 Jul;6(3):035004. doi: 10.1117/1.JMI.6.3.035004. Epub 2019 Sep 14.
8
Cancer Detection Using Hyperspectral Imaging and Evaluation of the Superficial Tumor Margin Variance with Depth.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10951. doi: 10.1117/12.2512985. Epub 2019 Mar 8.
9
Detection and delineation of squamous neoplasia with hyperspectral imaging in a mouse model of tongue carcinogenesis.
J Biophotonics. 2018 Mar;11(3). doi: 10.1002/jbio.201700078. Epub 2017 Oct 29.

引用本文的文献

1
Advances and challenges in pathomics for liver cancer: From diagnosis to prognostic stratification.
World J Clin Oncol. 2025 Jun 24;16(6):107646. doi: 10.5306/wjco.v16.i6.107646.
2
Using non-Gaussian diffusion models to distinguish benign from malignant head and neck lesions.
Front Oncol. 2025 May 29;15:1581637. doi: 10.3389/fonc.2025.1581637. eCollection 2025.
3
The Role of Neck Imaging Reporting and Data System (NI-RADS) in the Management of Head and Neck Cancers.
Bioengineering (Basel). 2025 Apr 8;12(4):398. doi: 10.3390/bioengineering12040398.

本文引用的文献

2
Current role of artificial intelligence in head and neck cancer surgery: a systematic review of literature.
Explor Target Antitumor Ther. 2023;4(5):933-940. doi: 10.37349/etat.2023.00174. Epub 2023 Oct 24.
4
Enhancing head and neck tumor management with artificial intelligence: Integration and perspectives.
Semin Cancer Biol. 2023 Oct;95:52-74. doi: 10.1016/j.semcancer.2023.07.002. Epub 2023 Jul 18.
7
Artificial intelligence to predict outcomes of head and neck radiotherapy.
Clin Transl Radiat Oncol. 2023 Jan 31;39:100590. doi: 10.1016/j.ctro.2023.100590. eCollection 2023 Mar.
8
Automatic Counterfeit Currency Detection Using a Novel Snapshot Hyperspectral Imaging Algorithm.
Sensors (Basel). 2023 Feb 10;23(4):2026. doi: 10.3390/s23042026.
9
Histopathological diagnosis of colon cancer using micro-FTIR hyperspectral imaging and deep learning.
Comput Methods Programs Biomed. 2023 Apr;231:107388. doi: 10.1016/j.cmpb.2023.107388. Epub 2023 Feb 2.
10
Active and Low-Cost Hyperspectral Imaging for the Spectral Analysis of a Low-Light Environment.
Sensors (Basel). 2023 Jan 28;23(3):1437. doi: 10.3390/s23031437.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验