Suppr超能文献

对端点刚度前馈控制的生物力学约束进行建模。

Modeling the biomechanical constraints on the feedforward control of endpoint stiffness.

作者信息

Hu Xiao, Murray Wendy M, Perreault Eric J

机构信息

Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4498-501. doi: 10.1109/IEMBS.2010.5626027.

Abstract

Appropriate regulation of human arm mechanics is essential for completing the diverse range of tasks we accomplish each day. The steady state mechanical properties of the arm most relevant for postural tasks can be characterized by endpoint stiffness, the static forces generated by a limb in response to external perturbations of posture. Endpoint stiffness is directional, resisting perturbations in certain directions more than others. It has been shown that humans can voluntarily control the orientation of the maximum stiffness to meet specific task requirements, although the limits on this control are poorly understood. Both neural and biomechanical factors may limit endpoint stiffness control. The purpose of this work was to quantify the biomechanical constraints limiting the control of stiffness orientation. A realistic musculoskeletal model of the human arm coupled with a model of muscle stiffness was used to explore the range of endpoint stiffness orientations that could be achieved with changes in the feedforward control of muscle activation. We found that this range is constrained by the biomechanics of the neuromuscular system, and by the requirements of the specific task being performed by the subject. These constraints and the sensitivity to experimental conditions may account for some of the discrepancies in the literature regarding the ability to control endpoint stiffness orientation.

摘要

对人体手臂力学进行适当调节对于完成我们每天所执行的各种任务至关重要。与姿势任务最相关的手臂稳态力学特性可通过端点刚度来表征,端点刚度是肢体在响应姿势的外部扰动时产生的静力。端点刚度具有方向性,在某些方向上比其他方向更能抵抗扰动。研究表明,人类能够自愿控制最大刚度的方向以满足特定任务要求,尽管对这种控制的限制了解甚少。神经和生物力学因素都可能限制端点刚度控制。这项工作的目的是量化限制刚度方向控制的生物力学约束。一个逼真的人体手臂肌肉骨骼模型与一个肌肉刚度模型相结合,用于探索通过改变肌肉激活的前馈控制所能实现的端点刚度方向范围。我们发现,这个范围受到神经肌肉系统生物力学以及受试者所执行的特定任务要求的限制。这些限制以及对实验条件的敏感性可能解释了文献中关于控制端点刚度方向能力的一些差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1e6/3753190/9bbda64828c0/nihms504382f1.jpg

相似文献

引用本文的文献

本文引用的文献

1
Sex differences in fatigue resistance are muscle group dependent.抗疲劳能力的性别差异取决于肌肉群。
Med Sci Sports Exerc. 2010 Oct;42(10):1943-50. doi: 10.1249/MSS.0b013e3181d8f8fa.
2
Concurrent adaptation of force and impedance in the redundant muscle system.冗余肌肉系统中力与阻抗的协同适应。
Biol Cybern. 2010 Jan;102(1):31-44. doi: 10.1007/s00422-009-0348-z. Epub 2009 Nov 21.
3
Modeling short-range stiffness of feline lower hindlimb muscles.猫科动物后肢下部肌肉短程刚度的建模
J Biomech. 2008;41(9):1945-52. doi: 10.1016/j.jbiomech.2008.03.024. Epub 2008 May 21.
7
Learning to control arm stiffness under static conditions.学习在静态条件下控制手臂的僵硬度。
J Neurophysiol. 2004 Dec;92(6):3344-50. doi: 10.1152/jn.00596.2004. Epub 2004 Jul 28.
8
A model of force and impedance in human arm movements.人类手臂运动中的力与阻抗模型。
Biol Cybern. 2004 May;90(5):368-75. doi: 10.1007/s00422-004-0484-4. Epub 2004 Jun 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验