Suppr超能文献

用于混合脑机接口的肌肉和脑信号多模态融合

Multimodal fusion of muscle and brain signals for a hybrid-BCI.

作者信息

Leeb Robert, Sagha Hesam, Chavarriaga Ricardo, Del R Millan Jose

机构信息

Non-Invasive Brain-Machine Interface, Center for Neuroprosthetics, Institute of Bioengineering, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Switzerland.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4343-6. doi: 10.1109/IEMBS.2010.5626233.

Abstract

Practical Brain-Computer Interfaces (BCIs) for disabled people should allow them to use all their remaining functionalities as control possibilities. Sometimes these people have residual activity of their muscles, most likely in the morning when they are not exhausted. In this work we fuse electromyographic (EMG) with electroencephalographic (EEG) activity in the framework of a so called "Hybrid-BCI" (hBCI) approach. Thereby, subjects could achieve a good control of their hBCI independently of their level of muscular fatigue. Furthermore, although EMG alone yields good performance, it is outperformed by the hybrid fusing of EEG and EMG. Two different fusion techniques are explored showing graceful performance degradation in the case of signal attenuation. Such a system allows a very reliable control and a smooth handover if the subjects get exhausted or fatigued during the day.

摘要

面向残疾人的实用脑机接口(BCI)应允许他们将所有剩余功能用作控制手段。有时这些人肌肉存在残余活动,很可能是在早晨他们还不累的时候。在这项工作中,我们在一种所谓的“混合脑机接口”(hBCI)方法的框架内,将肌电图(EMG)与脑电图(EEG)活动进行融合。由此,受试者能够独立于其肌肉疲劳程度对其混合脑机接口实现良好控制。此外,虽然仅肌电图就能产生良好性能,但脑电图和肌电图的混合融合表现更优。探索了两种不同的融合技术,结果表明在信号衰减情况下性能会平稳下降。这样的系统在受试者白天变得疲惫或疲劳时,能实现非常可靠的控制和顺畅的切换。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验