Suppr超能文献

基于 EEG-EMG 相关的脑机接口用于手部矫形器辅助神经康复。

An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation.

机构信息

Centre of Mechatronics, Indian Institute of Technology, Kanpur, India.

School of Computer Science and Electronic Engineering, University of Essex, United Kingdom.

出版信息

J Neurosci Methods. 2019 Jan 15;312:1-11. doi: 10.1016/j.jneumeth.2018.11.010. Epub 2018 Nov 16.

Abstract

BACKGROUND

Corticomuscular coupling has been investigated for long, to find out the underlying mechanisms behind cortical drives to produce different motor tasks. Although important in rehabilitation perspective, the use of corticomuscular coupling for driving brain-computer interface (BCI)-based neurorehabilitation is much ignored. This is primarily due to the fact that the EEG-EMG coherence popularly used to compute corticomuscular coupling, fails to produce sufficient accuracy in single-trial based prediction of motor tasks in a BCI system.

NEW METHOD

In this study, we have introduced a new corticomuscular feature extraction method based on the correlation between band-limited power time-courses (CBPT) associated with EEG and EMG. 16 healthy individuals and 8 hemiplegic patients participated in a BCI-based hand orthosis triggering task, to test the performance of the CBPT method. The healthy population was equally divided into two groups; one experimental group for CBPT-based BCI experiment and another control group for EEG-EMG coherence based BCI experiment.

RESULTS

The classification accuracy of the CBPT-based BCI system was found to be 92.81 ± 2.09% for the healthy experimental group and 84.53 ± 4.58% for the patients' group.

COMPARISON WITH EXISTING METHOD

The CBPT method significantly (p-value < 0.05) outperformed the conventional EEG-EMG coherence method in terms of classification accuracy.

CONCLUSIONS

The experimental results clearly indicate that the EEG-EMG CBPT is a better alternative as a corticomuscular feature to drive a BCI system. Additionally, it is also feasible to use the proposed method to design BCI-based robotic neurorehabilitation paradigms.

摘要

背景

皮质肌电耦合已被研究了很长时间,以了解皮质驱动产生不同运动任务的潜在机制。尽管在康复方面很重要,但皮质肌电耦合在基于脑机接口(BCI)的神经康复中的应用却被忽视了。这主要是因为普遍用于计算皮质肌电耦合的 EEG-EMG 相干性,在 BCI 系统中对运动任务的单次试验预测方面无法产生足够的准确性。

新方法

在这项研究中,我们引入了一种新的皮质肌电特征提取方法,该方法基于与 EEG 和 EMG 相关的带限功率时程(CBPT)之间的相关性。16 名健康个体和 8 名偏瘫患者参与了基于 BCI 的手部矫形器触发任务,以测试 CBPT 方法的性能。健康人群被平均分为两组;一组进行基于 CBPT 的 BCI 实验,另一组进行基于 EEG-EMG 相干性的 BCI 实验。

结果

健康实验组基于 CBPT 的 BCI 系统的分类准确率为 92.81±2.09%,患者组为 84.53±4.58%。

与现有方法的比较

在分类准确率方面,CBPT 方法明显(p 值<0.05)优于传统的 EEG-EMG 相干性方法。

结论

实验结果清楚地表明,EEG-EMG CBPT 是驱动 BCI 系统的更好的皮质肌电特征替代方法。此外,还可以使用所提出的方法来设计基于 BCI 的机器人神经康复范例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验