Alexopoulos Leonidas G, Melas Ioannis N, Chairakaki Aikaterini D, Saez-Rodriguez Julio, Mitsos Alexander
Department of Mechanical Engineering of National Technical University of Athens, 15780 Greece.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:6717-20. doi: 10.1109/IEMBS.2010.5626246.
Construction of signaling pathway maps and identification of drug effects are major challenge for pharmaceutical industries. Signaling maps are usually obtained from manual literature search, automated text mining algorithms, or canonical pathway databases (i.e. Reactome, KEGG, STKE, Pathway Studio, Ingenuity etc.) and in some cases they are used in combination with gene expression or mass spec data in an effort to create pathways specific to cell types or diseases. Our approach combines computational models with novel multicombinatorial high-throughput phosphoproteomic data for the functional analysis of signalling networks in mammalian cells. On the experimental front, we subject the cells with hundreds of co-treatment with a diverse set of ligands and inhibitors and we measure phosphorylation events on key signaling proteins using the xMAP technology. On the computational front, we create pathway maps that are cell type specific by fitting our phosphoprotein dataset into generic signaling maps via an Integer Linear programming formulation. To identify drug effects, we monitor the differences of topologies created with and without the presence of drug. In the present work, we use this approach to identify the effects of Nilotinib, a well known anti-cancer drug.
构建信号通路图谱和确定药物作用是制药行业面临的主要挑战。信号通路图谱通常通过手动文献检索、自动文本挖掘算法或标准通路数据库(如Reactome、KEGG、STKE、Pathway Studio、Ingenuity等)获得,在某些情况下,它们会与基因表达或质谱数据结合使用,以创建特定于细胞类型或疾病的通路。我们的方法将计算模型与新型多组合高通量磷酸化蛋白质组学数据相结合,用于哺乳动物细胞信号网络的功能分析。在实验方面,我们让细胞与数百种不同的配体和抑制剂进行联合处理,并使用xMAP技术测量关键信号蛋白上的磷酸化事件。在计算方面,我们通过整数线性规划公式将我们的磷酸化蛋白质数据集拟合到通用信号通路图谱中,从而创建特定于细胞类型的通路图谱。为了确定药物作用,我们监测有药物和无药物情况下创建的拓扑结构的差异。在本研究中,我们使用这种方法来确定著名抗癌药物尼洛替尼的作用。