Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
PLoS Comput Biol. 2009 Dec;5(12):e1000591. doi: 10.1371/journal.pcbi.1000591. Epub 2009 Dec 4.
Understanding the mechanisms of cell function and drug action is a major endeavor in the pharmaceutical industry. Drug effects are governed by the intrinsic properties of the drug (i.e., selectivity and potency) and the specific signaling transduction network of the host (i.e., normal vs. diseased cells). Here, we describe an unbiased, phosphoproteomic-based approach to identify drug effects by monitoring drug-induced topology alterations. With our proposed method, drug effects are investigated under diverse stimulations of the signaling network. Starting with a generic pathway made of logical gates, we build a cell-type specific map by constraining it to fit 13 key phopshoprotein signals under 55 experimental conditions. Fitting is performed via an Integer Linear Program (ILP) formulation and solution by standard ILP solvers; a procedure that drastically outperforms previous fitting schemes. Then, knowing the cell's topology, we monitor the same key phosphoprotein signals under the presence of drug and we re-optimize the specific map to reveal drug-induced topology alterations. To prove our case, we make a topology for the hepatocytic cell-line HepG2 and we evaluate the effects of 4 drugs: 3 selective inhibitors for the Epidermal Growth Factor Receptor (EGFR) and a non-selective drug. We confirm effects easily predictable from the drugs' main target (i.e., EGFR inhibitors blocks the EGFR pathway) but we also uncover unanticipated effects due to either drug promiscuity or the cell's specific topology. An interesting finding is that the selective EGFR inhibitor Gefitinib inhibits signaling downstream the Interleukin-1alpha (IL1alpha) pathway; an effect that cannot be extracted from binding affinity-based approaches. Our method represents an unbiased approach to identify drug effects on small to medium size pathways which is scalable to larger topologies with any type of signaling interventions (small molecules, RNAi, etc). The method can reveal drug effects on pathways, the cornerstone for identifying mechanisms of drug's efficacy.
理解细胞功能和药物作用的机制是制药行业的主要努力方向。药物作用受药物的固有特性(即选择性和效力)和宿主特定的信号转导网络(即正常与患病细胞)的支配。在这里,我们描述了一种基于磷酸蛋白质组学的无偏方法,通过监测药物诱导的拓扑结构改变来识别药物作用。使用我们提出的方法,可以在信号网络的多种刺激下研究药物作用。从由逻辑门组成的通用途径开始,我们通过将其约束为适应 55 种实验条件下的 13 种关键磷酸化蛋白信号来构建细胞类型特异性图谱。通过整数线性规划 (ILP) 公式和标准 ILP 求解器进行拟合;该过程的性能明显优于以前的拟合方案。然后,在了解细胞拓扑结构的情况下,我们在药物存在的情况下监测相同的关键磷酸化蛋白信号,并重新优化特定的图谱以揭示药物诱导的拓扑结构改变。为了证明我们的案例,我们为肝细胞系 HepG2 制作了一个拓扑结构,并评估了 4 种药物的作用:3 种表皮生长因子受体 (EGFR) 的选择性抑制剂和一种非选择性药物。我们确认了容易从药物的主要靶点(即 EGFR 抑制剂阻断 EGFR 途径)预测的作用,但我们也发现了由于药物混杂或细胞特定拓扑结构而导致的意外作用。一个有趣的发现是,选择性 EGFR 抑制剂吉非替尼抑制了白细胞介素-1α(IL1alpha)途径下游的信号;这种作用无法从基于结合亲和力的方法中提取。我们的方法代表了一种识别中小规模途径中药物作用的无偏方法,可扩展到具有任何类型信号干预(小分子、RNAi 等)的更大拓扑结构。该方法可以揭示药物对途径的作用,这是识别药物疗效机制的基础。