Tanaka Yoshiyuki, Ohata Yohei, Kawamoto Tomohiro, Hirata Yutaka
Department of Computer Science, Chubu University Graduate School of Engineering, 1200 Matsumoto Kasugai Aichi, Japan.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:1589-92. doi: 10.1109/IEMBS.2010.5626673.
A new adaptive motor controller was constructed, and tested on the control of a 2-wheeled balancing robot in simulation and real world. The controller consists of a feedback (PD) controller and a cerebellar neuronal network model. The structure of the cerebellar model was configured based upon known anatomical neuronal connection in the cerebellar cortex. Namely it consists of 120 granular (Gr) cells, 1 Golgi cell, 6 basket/stellate cells, and 1 Purkinje (Pk) cell. Each cell is described by a typical artificial neuron model that outputs a weighted sum of inputs after a sigmoidal nonlinear transformation. The 2 components of the proposed controller work in parallel, in a way that the cerebellar model adaptively modifies the synaptic weights between Gr and Pk as in the real cerebellum to minimize the output of the PD controller. We demonstrate that the proposed controller successfully controls a 2-wheeled balancing robot, and the cerebellar model rapidly takes over the PD controller in simulation. We also show that an abrupt load change on the robot, which the PD controller alone cannot compensate for, can be adaptively compensated by the cerebellar model. We further confirmed that the proposed controller can be applied to the control of the robot in real world.
构建了一种新型自适应电机控制器,并在两轮平衡机器人的控制中进行了仿真和实际测试。该控制器由一个反馈(PD)控制器和一个小脑神经网络模型组成。小脑模型的结构是根据小脑皮质中已知的解剖神经元连接来配置的。具体来说,它由120个颗粒(Gr)细胞、1个高尔基细胞、6个篮状/星状细胞和1个浦肯野(Pk)细胞组成。每个细胞都由一个典型的人工神经元模型描述,该模型在进行S型非线性变换后输出输入的加权和。所提出的控制器的两个组件并行工作,小脑模型以类似于真实小脑的方式自适应地修改Gr和Pk之间的突触权重,以最小化PD控制器的输出。我们证明了所提出的控制器成功地控制了两轮平衡机器人,并且小脑模型在仿真中迅速接管了PD控制器。我们还表明,机器人上的突然负载变化,仅靠PD控制器无法补偿,而小脑模型可以自适应地进行补偿。我们进一步证实了所提出的控制器可以应用于实际环境中机器人的控制。