Suppr超能文献

一个逼真的小脑双半球模型揭示了运动控制过程中大量颗粒细胞的作用。

A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control.

作者信息

Pinzon-Morales Ruben-Dario, Hirata Yutaka

机构信息

Neural Cybernetics Laboratory, Department of Computer Science, Chubu University Graduate School of Engineering Kasugai, Japan.

出版信息

Front Neural Circuits. 2015 May 1;9:18. doi: 10.3389/fncir.2015.00018. eCollection 2015.

Abstract

The cerebellar granule cells (GCs) have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to support motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN) to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF), an unstable two-wheel balancing robot (2 DOFs), and a simulation model of a quadcopter (6 DOFs). Results showed that adequate control was maintained with a relatively small number of GCs (< 200) in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs). It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights). Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections).

摘要

有人提出,小脑颗粒细胞(GCs)对传入的感觉/运动信息进行无损、适应性时空编码,这是下游小脑回路支持运动学习、运动协调和认知所必需的。在这里,我们使用一个受生理解剖学启发的双半球小脑神经元网络(biCNN)来选择性地启用/禁用GCs的输出,并评估三种不同控制场景下的行为和神经后果。控制场景包括一个简单的直流电机(1个自由度:DOF)、一个不稳定的两轮平衡机器人(2个自由度)和一个四轴飞行器的仿真模型(6个自由度)。结果表明,在所有控制场景中,相对少量的GCs(<200个)就能维持适当的控制。然而,成功控制每个控制对象所需的GCs最小数量随着其复杂性(即自由度)的增加而增加。研究还表明,增加GCs的数量会提高对biCNN模型初始化参数(即突触连接和突触权重)变化的鲁棒性。因此,我们认为小脑皮质中丰富的GCs在小脑参与的大量运动活动和运动对象中提供了计算能力,并增强了对小脑微电路变化(如神经元连接)的鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80da/4416449/ef840c52468b/fncir-09-00018-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验