Suppr超能文献

从大脑中提取评估反馈以适配运动神经假体解码器。

Extracting an evaluative feedback from the brain for adaptation of motor neuroprosthetic decoders.

作者信息

Mahmoudi Babak, Principe Jose C, Sanchez Justin C

机构信息

Department of Biomedical Engineering, University of Florida, 130 BME Building, Gainesville, FL 32611, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:1682-5. doi: 10.1109/IEMBS.2010.5626827.

Abstract

The design of Brain-Machine Interface (BMI) neural decoders that have robust performance in changing environments encountered in daily life activity is a challenging problem. One solution to this problem is the design of neural decoders that are able to assist and adapt to the user by participating in their perception-action-reward cycle (PARC). Using inspiration both from artificial intelligence and neurobiology reinforcement learning theories, we have designed a novel decoding architecture that enables a symbiotic relationship between the user and an Intelligent Assistant (IA). By tapping into the motor and reward centers in the brain, the IA adapts the process of decoding neural motor commands into prosthetic actions based on the user's goals. The focus of this paper is on extraction of goal information directly from the brain and making it accessible to the IA as an evaluative feedback for adaptation. We have recorded the neural activity of the Nucleus Accumbens in behaving rats during a reaching task. The peri-event time histograms demonstrate a rich representation of the reward prediction in this subcortical structure that can be modeled on a single trial basis as a scalar evaluative feedback with high precision.

摘要

设计在日常生活活动中遇到的不断变化的环境中具有强大性能的脑机接口(BMI)神经解码器是一个具有挑战性的问题。解决这个问题的一种方法是设计能够通过参与用户的感知-行动-奖励循环(PARC)来协助和适应用户的神经解码器。借鉴人工智能和神经生物学强化学习理论,我们设计了一种新颖的解码架构,使用户与智能助手(IA)之间建立共生关系。通过利用大脑中的运动和奖励中心,IA根据用户的目标调整将神经运动命令解码为假肢动作的过程。本文的重点是直接从大脑中提取目标信息,并将其作为适应性评估反馈提供给IA。我们记录了行为大鼠在伸手任务期间伏隔核的神经活动。事件周围时间直方图表明,在这个皮质下结构中奖励预测有丰富的表现,可以在单次试验的基础上高精度地建模为标量评估反馈。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验