Suppr超能文献

通过强化学习实现的协同自适应脑机接口

Coadaptive brain-machine interface via reinforcement learning.

作者信息

DiGiovanna Jack, Mahmoudi Babak, Fortes Jose, Principe Jose C, Sanchez Justin C

机构信息

Department of Biomedical Engineering, University of Florida, Gainesville, FL 32608, USA.

出版信息

IEEE Trans Biomed Eng. 2009 Jan;56(1):54-64. doi: 10.1109/TBME.2008.926699.

Abstract

This paper introduces and demonstrates a novel brain-machine interface (BMI) architecture based on the concepts of reinforcement learning (RL), coadaptation, and shaping. RL allows the BMI control algorithm to learn to complete tasks from interactions with the environment, rather than an explicit training signal. Coadaption enables continuous, synergistic adaptation between the BMI control algorithm and BMI user working in changing environments. Shaping is designed to reduce the learning curve for BMI users attempting to control a prosthetic. Here, we present the theory and in vivo experimental paradigm to illustrate how this BMI learns to complete a reaching task using a prosthetic arm in a 3-D workspace based on the user's neuronal activity. This semisupervised learning framework does not require user movements. We quantify BMI performance in closed-loop brain control over six to ten days for three rats as a function of increasing task difficulty. All three subjects coadapted with their BMI control algorithms to control the prosthetic significantly above chance at each level of difficulty.

摘要

本文介绍并演示了一种基于强化学习(RL)、协同适应和塑造概念的新型脑机接口(BMI)架构。强化学习使BMI控制算法能够从与环境的交互中学习完成任务,而不是依靠明确的训练信号。协同适应能使BMI控制算法与在不断变化的环境中工作的BMI用户之间实现持续的协同适应。塑造旨在降低试图控制假肢的BMI用户的学习曲线。在此,我们提出理论和体内实验范式,以说明这种BMI如何基于用户的神经元活动,在三维工作空间中使用假肢手臂学习完成伸手任务。这种半监督学习框架不需要用户移动。我们将三只大鼠在六至十天的闭环脑控制中BMI的性能量化为任务难度增加的函数。在每个难度级别上,所有三个受试者都能与他们的BMI控制算法协同适应,以显著高于随机水平的表现控制假肢。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验