Chhatbar Pratik Y, Francis Joseph T
Joint Graduate Program in Biomedical Engineering between SUNY Downstate Medical Center and Polytechnic Institute of New York University at Brooklyn, NY 11203, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:1686-90. doi: 10.1109/IEMBS.2010.5626832.
Use of neural activity to predict kinematic variables such as position, velocity and direction etc of movements has been implemented in real-time control of robotic systems and computer cursors. In everyday life, however, we generate variable amounts of force to manipulate objects of different inertial properties or to follow the same trajectory under different external dynamic environments like air or water. The resultant work during such movements, and its time derivative power, should depend on the dynamics of the movement. In order to give the users of a brain-machine interface (BMI) comprehensive control of a prosthetic limb under different dynamic conditions, it is imperative to consider the dynamics-related parameters like end-effector forces, joint torques or power. In this paper, we show distribution patterns of two such dynamics parameters - force and power - and their predictive efficiency under different dynamic environmental conditions. We intend to find the force-related parameter, which has optimal predictive efficiency across different dynamic environments that is generalization. Our ultimate goal is to materialize a force-based brain-machine interface (fBMI).
利用神经活动来预测运动的运动学变量,如位置、速度和方向等,已在机器人系统和计算机光标实时控制中得以实现。然而,在日常生活中,我们会产生不同大小的力来操纵具有不同惯性属性的物体,或在诸如空气或水等不同外部动态环境下遵循相同轨迹。这种运动过程中的合成功及其时间导数功率应取决于运动的动力学特性。为了让脑机接口(BMI)的用户在不同动态条件下对假肢进行全面控制,必须考虑与动力学相关的参数,如末端执行器力、关节扭矩或功率。在本文中,我们展示了两个这样的动力学参数——力和功率——的分布模式及其在不同动态环境条件下的预测效率。我们旨在找到在不同动态环境下具有最佳预测效率(即泛化性)的与力相关的参数。我们的最终目标是实现基于力的脑机接口(fBMI)。