Suppr超能文献

关于通过分割控制机制对顺应性(惯性 - 粘弹性)负载进行的自主运动。

On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms.

作者信息

Gottlieb G L

机构信息

NeuroMuscular Research Center, Boston University, Massachusetts 02215, USA.

出版信息

J Neurophysiol. 1996 Nov;76(5):3207-29. doi: 10.1152/jn.1996.76.5.3207.

Abstract
  1. Experiments were performed to characterize the trajectories, net muscle torques, and electromyogram (EMG) patterns when subjects performed voluntary elbow flexions against different compliant loads. Subjects made movements in a single-joint manipulandum with different loads generated by a torque motor. Some series of movements were performed under entirely known and predictable load conditions. Other series were performed with the same known loads, interspersed, just before movement onset with occasional, unpredictable changes in the magnitude of the load. 2. To move a larger load, subjects increase the impulse (torque-time integral) by prolonging the duration of the accelerating torque while keeping its rate of rise constant. Subjects modulate torque most for inertial loads, less for viscous loads, and least for elastic loads, and modulation is greater under predictable than unpredictable load conditions. 3. Even when the loads are predictable, subjects move large inertial and viscous, but not elastic, loads more slowly than small. Unpredictable changes in load have a larger effect on movement kinematics than do known changes of the same magnitude. 4. Subjects prolong the duration and increase the area of the agonist EMG burst but do not change its rate of rise to move larger, predictable loads. Subjects change the area of the antagonist burst according to the torque requirements of the load, increasing it only for increases in inertial loads. These effects are usually greater for predictable than unpredictable loads but in either case, are highly variable across subjects. 5. Predictable loads that slow the movements delay the onset of the antagonist burst. When changes in load are unpredictable, only inertial changes affect antagonist latency. 6. The initial change in muscle force when there is an unexpected change in the external load is due to the viscous properties of muscle tissue. Electromyographic evidence of reflex changes in muscle activation follow this intrinsic mechanical response by 50-70 ms. Elastic neuromuscular properties may also be important but only late in the movement as the final position is approached. 7. We propose that the central command for a voluntary movement should be described by three elements. The first element (alpha) specifies the muscle activation pattern expected to generate dynamic forces adequate and appropriate to produce a satisfactory trajectory. This feed-forward control program uses simple rules, based on an internal model of task dynamics constructed from prior experience. The second element (lambda) is a kinematic plan or reference trajectory utilizing the negative feedback of reflex action to partially compensate for errors in alpha or for unexpected perturbations during the movement. It defines the locus of a moving, instantaneous equilibrium position of the limb, a "template" for the intended trajectory. As movements become slower and require smaller dynamic (velocity and acceleration dependent) forces, lambda will become the dominant control signal. It is also used for correction and updating of the internal model used to generate alpha. The third element (gamma) modulates volitional set, the degree and manner in which multiple reflex mechanisms can contribute to the muscle activation patterns if the actual trajectory deviates from the planned one. Reflex mechanisms work in parallel with intrinsic muscle compliance to provide partial adaptation of neuromuscular system dynamics to external load dynamics. These controlled compliant mechanisms maintain the stability of the motor system, without which both posture and movement would not be possible.
摘要
  1. 进行了实验,以描绘受试者在对抗不同顺应性负荷进行自主肘部屈曲时的轨迹、净肌肉扭矩和肌电图(EMG)模式。受试者在由扭矩电机产生不同负荷的单关节操作器中进行运动。一些运动系列是在完全已知且可预测的负荷条件下进行的。其他系列则是在相同的已知负荷下进行,在运动开始前偶尔穿插有负荷大小的不可预测变化。2. 为了移动更大的负荷,受试者通过延长加速扭矩的持续时间同时保持其上升速率不变来增加冲量(扭矩 - 时间积分)。受试者对惯性负荷的扭矩调节最大,对粘性负荷的调节较小,对弹性负荷的调节最小,并且在可预测负荷条件下的调节大于不可预测负荷条件下的调节。3. 即使负荷是可预测的,受试者移动大的惯性和粘性负荷时比移动小负荷时更慢,但弹性负荷除外。负荷的不可预测变化对运动运动学的影响比对相同大小的已知变化的影响更大。4. 受试者延长了主动肌EMG爆发的持续时间并增加了其面积,但不改变其上升速率以移动更大的、可预测的负荷。受试者根据负荷的扭矩要求改变拮抗肌爆发的面积,仅在惯性负荷增加时才增加其面积。这些效应在可预测负荷条件下通常比不可预测负荷条件下更大,但在任何一种情况下,受试者之间的差异都很大。5. 使运动变慢的可预测负荷会延迟拮抗肌爆发的起始。当负荷变化不可预测时,只有惯性变化会影响拮抗肌潜伏期。6. 当外部负荷出现意外变化时,肌肉力量的初始变化是由于肌肉组织的粘性特性。肌肉激活反射变化的肌电图证据在这种内在机械反应之后50 - 70毫秒出现。弹性神经肌肉特性可能也很重要,但仅在接近最终位置的运动后期才起作用。7. 我们提出,自主运动的中枢指令应由三个要素来描述。第一个要素(α)指定预期产生足以产生令人满意轨迹的动态力的肌肉激活模式。这个前馈控制程序基于从先前经验构建的任务动力学内部模型使用简单规则。第二个要素(λ)是一个运动学计划或参考轨迹,利用反射动作的负反馈来部分补偿α中的误差或运动期间的意外扰动。它定义了肢体移动的瞬时平衡位置的轨迹,即预期轨迹的“模板”。随着运动变慢且需要较小的动态(依赖于速度和加速度)力,λ将成为主导控制信号。它还用于校正和更新用于生成α的内部模型。第三个要素(γ)调节意志设定,即如果实际轨迹偏离计划轨迹,多种反射机制可以对肌肉激活模式做出贡献的程度和方式。反射机制与内在肌肉顺应性并行工作,以使神经肌肉系统动力学部分适应外部负荷动力学。这些受控顺应机制维持运动系统的稳定性,没有它,姿势和运动都将无法实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验