Salimpour Yousef, Soltanian-Zadeh Hamid, Abolhassani Mohammad D
Neuroscience and Neuroengineering in School of Cognitive Sciences, Institute for Studies in Fundamental Sciences (IPM), Tehran, Iran.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:6670-3. doi: 10.1109/IEMBS.2010.5627159.
A temporal point process is a stochastic time series of binary events that occurs in continuous time. In computational neuroscience, the point process is used to model neuronal spiking activity; however, estimating the model parameters from spike train is a challenging problem. The state space point process filtering theory is a new technique for the estimation of the states and parameters. In order to use the stochastic filtering theory for the states of neuronal system with the Gaussian assumption, we apply the extended Kalman filter. In this regard, the extended Kalman filtering equations are derived for the point process observation. We illustrate the new filtering algorithm by estimating the effect of visual stimulus on the spiking activity of object selective neurons from the inferior temporal cortex of macaque monkey. Based on the goodness-offit assessment, the extended Kalman filter provides more accurate state estimate than the conventional methods.
时间点过程是一种在连续时间内发生的二元事件的随机时间序列。在计算神经科学中,点过程用于对神经元的放电活动进行建模;然而,从放电序列估计模型参数是一个具有挑战性的问题。状态空间点过程滤波理论是一种用于估计状态和参数的新技术。为了在高斯假设下将随机滤波理论应用于神经元系统的状态估计,我们应用扩展卡尔曼滤波器。在这方面,针对点过程观测推导了扩展卡尔曼滤波方程。我们通过估计视觉刺激对猕猴颞下皮质中物体选择性神经元放电活动的影响来说明这种新的滤波算法。基于拟合优度评估,扩展卡尔曼滤波器比传统方法提供了更准确的状态估计。