Suppr超能文献

使用混合模型的多维解码问题的实时点过程滤波器。

Real-Time Point Process Filter for Multidimensional Decoding Problems Using Mixture Models.

机构信息

Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.

Department of Mathematics and Statistics, Boston University, Boston, MA, 02215, United States.

出版信息

J Neurosci Methods. 2021 Jan 15;348:109006. doi: 10.1016/j.jneumeth.2020.109006. Epub 2020 Nov 21.

Abstract

There is an increasing demand for a computationally efficient and accurate point process filter solution for real-time decoding of population spiking activity in multidimensional spaces. Real-time tools for neural data analysis, specifically real-time neural decoding solutions open doors for developing experiments in a closed-loop setting and more versatile brain-machine interfaces. Over the past decade, the point process filter has been successfully applied in the decoding of behavioral and biological signals using spiking activity of an ensemble of cells; however, the filter solution is computationally expensive in multi-dimensional filtering problems. Here, we propose an approximate filter solution for a general point-process filter problem when the conditional intensity of a cell's spiking activity is characterized using a Mixture of Gaussians. We propose the filter solution for a broader class of point process observation called marked point-process, which encompasses both clustered - mainly, called sorted - and clusterless - generally called unsorted or raw- spiking activity. We assume that the posterior distribution on each filtering time-step can be approximated using a Gaussian Mixture Model and propose a computationally efficient algorithm to estimate the optimal number of mixture components and their corresponding weights, mean, and covariance estimates. This algorithm provides a real-time solution for multi-dimensional point-process filter problem and attains accuracy comparable to the exact solution. Our solution takes advantage of mixture dropping and merging algorithms, which collectively control the growth of mixture components on each filtering time-step. We apply this methodology in decoding a rat's position in both 1-D and 2-D spaces using clusterless spiking data of an ensemble of rat hippocampus place cells. The approximate solution in 1-D and 2-D decoding is more than 20 and 4,000 times faster than the exact solution, while their accuracy in decoding a rat position only drops by less than 9% and 4% in RMSE and 95% highest probability coverage area (HPD) performance metrics. Though the marked-point filter solution is better suited for real-time decoding problems, we discuss how the filter solution can be applied to sorted spike data to better reflect the proposed methodology versatility.

摘要

对于在多维空间中实时解码群体尖峰活动的计算效率高且准确的点过程滤波器解决方案的需求日益增长。神经数据分析的实时工具,特别是实时神经解码解决方案为在闭环设置中开发实验和更通用的脑机接口打开了大门。在过去的十年中,点过程滤波器已成功应用于使用细胞群体的尖峰活动来解码行为和生物信号;然而,在多维滤波问题中,滤波器解决方案的计算成本很高。在这里,我们提出了一种一般点过程滤波器问题的近似滤波器解决方案,其中细胞的尖峰活动的条件强度使用混合高斯模型来描述。我们为更广泛的一类点过程观测提出了滤波器解决方案,称为标记点过程,它包含聚类的 - 主要是排序的 - 和无聚类的 - 通常称为无序或原始的尖峰活动。我们假设在每个滤波时间步上的后验分布可以使用高斯混合模型来近似,并提出了一种计算有效的算法来估计最佳混合组件数量及其对应的权重、均值和协方差估计值。该算法为多维点过程滤波器问题提供了实时解决方案,并达到了与精确解相当的精度。我们的解决方案利用混合丢弃和合并算法,这些算法共同控制每个滤波时间步上混合组件的增长。我们将此方法应用于使用大鼠海马体位置细胞群体的无聚类尖峰数据在 1-D 和 2-D 空间中解码大鼠的位置。在 1-D 和 2-D 解码中的近似解决方案比精确解决方案快 20 多倍和 4000 多倍,而在解码大鼠位置的精度仅下降不到 9%和 4%,在 RMSE 和 95%最高概率覆盖区域(HPD)性能指标中。尽管标记点滤波器解决方案更适合实时解码问题,但我们讨论了如何将滤波器解决方案应用于排序的尖峰数据,以更好地反映所提出的方法的多功能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad48/8828672/add290cc637f/nihms-1653395-f0011.jpg

相似文献

4
Dynamic analyses of information encoding in neural ensembles.神经群体中信息编码的动态分析。
Neural Comput. 2004 Feb;16(2):277-307. doi: 10.1162/089976604322742038.
6
Bayesian decoding using unsorted spikes in the rat hippocampus.大鼠海马体中未排序尖峰的贝叶斯解码。
J Neurophysiol. 2014 Jan;111(1):217-27. doi: 10.1152/jn.01046.2012. Epub 2013 Oct 2.
7
Modeling Neural Connectivity in a Point-Process Analogue of Kalman Filter.基于卡尔曼滤波的点过程模拟的神经连接建模。
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:768-771. doi: 10.1109/EMBC48229.2022.9871283.
10
Multiscale modeling and decoding algorithms for spike-field activity.尖峰-场活动的多尺度建模与解码算法。
J Neural Eng. 2019 Feb;16(1):016018. doi: 10.1088/1741-2552/aaeb1a. Epub 2018 Oct 24.

本文引用的文献

4
Combining Mixture Components for Clustering.组合混合成分用于聚类。
J Comput Graph Stat. 2010 Jun 1;9(2):332-353. doi: 10.1198/jcgs.2010.08111.
9
Random walk models in biology.生物学中的随机游走模型。
J R Soc Interface. 2008 Aug 6;5(25):813-34. doi: 10.1098/rsif.2008.0014.
10
Recursive unsupervised learning of finite mixture models.有限混合模型的递归无监督学习
IEEE Trans Pattern Anal Mach Intell. 2004 May;26(5):651-6. doi: 10.1109/TPAMI.2004.1273970.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验