Suppr超能文献

评估心力衰竭患者睡眠相关呼吸障碍的严重程度并增进对此的理解。

Assessing the severity and improving the understanding of sleep-related breathing disorders in heart failure patients.

作者信息

Pinna Gian Domenico, La Rovere Maria Teresa, Robbi Elena, Maestri Roberto

机构信息

Department of Biomedical Engineering, S. Maugeri Foundation, Montescano, Italy.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3571-4. doi: 10.1109/IEMBS.2010.5627463.

Abstract

In this manuscript we present an overview of novel signal processing techniques developed by our group to reduce scoring time in the assessment of the severity of sleep-related breathing disorders in heart failure patients and to detect sleep/wake fluctuations during periodic breathing. Besides describing these methods, we present the results of validation experiments. Our work shows that novel signal processing techniques can reduce costs and resources needed to screen the patients and can provide relevant information for better understanding the role of wake/sleep transitions in the development and maintenance of breathing disorders.

摘要

在本手稿中,我们概述了我们团队开发的新型信号处理技术,这些技术用于减少心力衰竭患者睡眠相关呼吸障碍严重程度评估中的评分时间,并检测周期性呼吸期间的睡眠/觉醒波动。除了描述这些方法外,我们还展示了验证实验的结果。我们的工作表明,新型信号处理技术可以降低筛查患者所需的成本和资源,并可为更好地理解觉醒/睡眠转换在呼吸障碍发生和维持中的作用提供相关信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验