Grouselle D, Destombes J, Barret A, Pradelles P, Loudes C, Tixier-Vidal A, Faivre-Bauman A
Groupe de Neuroendocrinologie Cellulaire et Moleculaire, Centre National de la Recherche Scientifique, URA 1115, College de France, Paris.
Endocrinology. 1990 May;126(5):2454-64. doi: 10.1210/endo-126-5-2454.
Two antisera (Anti-P7 and Anti-P10) were raised against (-Gln-His-Pro-Gly-) elongated peptides: P7 Gln-His-Pro-Gly-Lys-Arg-Phe) and P10 (Ser-Lys-Arg-Gln-His-Pro-Gly-Lys-Arg-Phe). They recognized TRH extended peptides but not TRH. A RIA against P7 and a highly sensitive enzyme immunoassay against P10 were used to identify two major high mol wt forms of 25-35 K and 6-8 K in chromatography fractions of adult and fetal mouse as well as adult rat hypothalami. The existence of the largest form was confirmed by immunoblotting with Anti-P7. During mouse hypothalamus development in vivo and in vitro, the ratio of TRH content vs. P10-associated immunoreactivity increased several times. This suggests that these Pro-TRH peptides are precursors of TRH biosynthesis and indicate an acceleration of TRH processing during development. Double immunostaining with A-TRH and A-P7 of hypothalamic cells taken on the 16th fetal day and cultured for 6, 12, and 18 days in vitro (DIV) revealed three populations of neurons: 1) a very minor population (approximately 2%) of small round cells positive with A-TRH only; 2) a major population of neurons positive with both A-TRH and A-P7. 3) multipolar neurons positive with A-P7 only (up to approximately 45% after 18 DIV). The respective distribution of TRH and P7 along neurites also varied with time in culture. Whatever perikarya staining, TRH was restricted to short neurites and growth cones before synapse formation and, during synapse development, to varicosities and terminal boutons. However even at the latest stage examined some varicosities and terminal boutons were positive with A-P7 only. These results suggest a preferential processing of pro-TRH at a post-Golgi step during axonal transport to growth cones and synaptic boutons.
针对(-谷氨酰胺-组氨酸-脯氨酸-甘氨酸-)延伸肽制备了两种抗血清(抗P7和抗P10):P7(谷氨酰胺-组氨酸-脯氨酸-甘氨酸-赖氨酸-精氨酸-苯丙氨酸)和P10(丝氨酸-赖氨酸-精氨酸-谷氨酰胺-组氨酸-脯氨酸-甘氨酸-赖氨酸-精氨酸-苯丙氨酸)。它们能识别TRH延伸肽,但不能识别TRH。采用针对P7的放射免疫分析和针对P10的高灵敏度酶免疫分析,在成年和胎儿小鼠以及成年大鼠下丘脑的色谱分离组分中鉴定出两种主要的高分子量形式,分别为25 - 35K和6 - 8K。用抗P7进行免疫印迹证实了最大形式的存在。在小鼠下丘脑体内和体外发育过程中,TRH含量与P10相关免疫反应性的比值增加了几倍。这表明这些促甲状腺激素释放激素(Pro-TRH)肽是TRH生物合成的前体,并表明在发育过程中TRH加工加速。对取自胎儿第16天并在体外培养6、12和18天(体外培养天数,DIV)的下丘脑细胞进行抗TRH和抗P7双重免疫染色,发现有三类神经元:1)非常少的一类(约2%)小圆形细胞,仅对抗TRH呈阳性;2)主要的一类神经元,对抗TRH和抗P7均呈阳性;3)仅对抗P7呈阳性的多极神经元(体外培养18天后可达约45%)。TRH和P7沿神经突的各自分布也随培养时间而变化。无论核周染色情况如何,在突触形成前,TRH局限于短神经突和生长锥,在突触发育过程中,局限于膨体和终末小体。然而,即使在检查的最晚阶段,一些膨体和终末小体仅对抗P7呈阳性。这些结果表明,在轴突运输到生长锥和突触小体的过程中,Pro-TRH在高尔基体后步骤存在优先加工。