Schuck A, Lemke C, Suvichakorn A, Antoine J-P
Electrical Eng. Dept. (DELET), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:855-8. doi: 10.1109/IEMBS.2010.5628034.
A new class of wavelet functions called data-based autocorrelation wavelets is developed for analyzing Magnetic Resonance Spectroscopic (MRS) signals by means of the continuous wavelet transform (CWT), instead of the traditional wavelet like Morlet wavelet. These new wavelets are derived from the normalized autocorrelation function from metabolite data and then used for detecting the presence of a given metabolite in a signal with a presence of many different components and finally for quantifying some of its parameters.
开发了一类名为基于数据的自相关小波的新小波函数,用于通过连续小波变换(CWT)分析磁共振波谱(MRS)信号,而不是像传统的莫雷特小波那样的小波。这些新小波是从代谢物数据的归一化自相关函数推导而来的,然后用于在存在许多不同成分的信号中检测给定代谢物的存在,并最终用于量化其一些参数。