Suppr超能文献

基于数据的自相关小波对磁共振波谱信号的分析

Analysis of Magnetic Resonance Spectroscopic signals with data-based autocorrelation wavelets.

作者信息

Schuck A, Lemke C, Suvichakorn A, Antoine J-P

机构信息

Electrical Eng. Dept. (DELET), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:855-8. doi: 10.1109/IEMBS.2010.5628034.

Abstract

A new class of wavelet functions called data-based autocorrelation wavelets is developed for analyzing Magnetic Resonance Spectroscopic (MRS) signals by means of the continuous wavelet transform (CWT), instead of the traditional wavelet like Morlet wavelet. These new wavelets are derived from the normalized autocorrelation function from metabolite data and then used for detecting the presence of a given metabolite in a signal with a presence of many different components and finally for quantifying some of its parameters.

摘要

开发了一类名为基于数据的自相关小波的新小波函数,用于通过连续小波变换(CWT)分析磁共振波谱(MRS)信号,而不是像传统的莫雷特小波那样的小波。这些新小波是从代谢物数据的归一化自相关函数推导而来的,然后用于在存在许多不同成分的信号中检测给定代谢物的存在,并最终用于量化其一些参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验