Debarba Henrique G, Zanchet Dinamar J, Fracaro Daiane, Maciel Anderson, Kalil Antonio N
Instituto de Informática, Universidade Federal do Rio Grande do Sul, P.O. Box 15064, 91501-970 Porto Alegre, Brazil.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4797-800. doi: 10.1109/IEMBS.2010.5628026.
Anatomic hepatectomies are resections in which compromised segments or sectors of the liver are extracted according to the topological structure of its vascular elements. Such structure varies considerably among patients, which makes the current anatomy-based planning methods often inaccurate. In this work we propose a strategy to efficiently and semi-automatically segment and classify patient-specific liver models in 3D. The method is based on standard CT datasets and allows accurate estimation of functional remaining liver volume. Experiments showing effectiveness of the method are presented, and quantitative and qualitative results are discussed.
解剖性肝切除术是根据肝脏血管元素的拓扑结构切除肝脏中受损节段或区段的手术。这种结构在患者之间差异很大,这使得当前基于解剖学的规划方法常常不准确。在这项工作中,我们提出了一种策略,用于在三维空间中高效且半自动地分割和分类特定患者的肝脏模型。该方法基于标准CT数据集,并能准确估计功能性剩余肝脏体积。本文展示了该方法有效性的实验,并讨论了定量和定性结果。