Suppr超能文献

使用三维卷积神经网络对门静脉期磁共振图像上的肝段进行自动分割。

Automated segmentation of liver segment on portal venous phase MR images using a 3D convolutional neural network.

作者信息

Han Xinjun, Wu Xinru, Wang Shuhui, Xu Lixue, Xu Hui, Zheng Dandan, Yu Niange, Hong Yanjie, Yu Zhixuan, Yang Dawei, Yang Zhenghan

机构信息

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China.

出版信息

Insights Imaging. 2022 Feb 24;13(1):26. doi: 10.1186/s13244-022-01163-1.

Abstract

OBJECTIVE

We aim to develop and validate a three-dimensional convolutional neural network (3D-CNN) model for automatic liver segment segmentation on MRI images.

METHODS

This retrospective study evaluated an automated method using a deep neural network that was trained, validated, and tested with 367, 157, and 158 portal venous phase MR images, respectively. The Dice similarity coefficient (DSC), mean surface distance (MSD), Hausdorff distance (HD), and volume ratio (RV) were used to quantitatively measure the accuracy of segmentation. The time consumed for model and manual segmentation was also compared. In addition, the model was applied to 100 consecutive cases from real clinical scenario for a qualitative evaluation and indirect evaluation.

RESULTS

In quantitative evaluation, the model achieved high accuracy for DSC, MSD, HD and RV (0.920, 3.34, 3.61 and 1.01, respectively). Compared to manual segmentation, the automated method reduced the segmentation time from 26 min to 8 s. In qualitative evaluation, the segmentation quality was rated as good in 79% of the cases, moderate in 15% and poor in 6%. In indirect evaluation, 93.4% (99/106) of lesions could be assigned to the correct segment by only referring to the results from automated segmentation.

CONCLUSION

The proposed model may serve as an effective tool for automated anatomical region annotation of the liver on MRI images.

摘要

目的

我们旨在开发并验证一种用于在磁共振成像(MRI)图像上自动进行肝脏段分割的三维卷积神经网络(3D-CNN)模型。

方法

这项回顾性研究评估了一种使用深度神经网络的自动化方法,该方法分别使用367幅、157幅和158幅门静脉期MR图像进行训练、验证和测试。采用Dice相似系数(DSC)、平均表面距离(MSD)、豪斯多夫距离(HD)和体积比(RV)来定量测量分割的准确性。还比较了模型分割和手动分割所花费的时间。此外,该模型被应用于来自真实临床场景的100例连续病例,以进行定性评估和间接评估。

结果

在定量评估中,该模型在DSC、MSD、HD和RV方面达到了较高的准确性(分别为0.920、3.34、3.61和1.01)。与手动分割相比,自动化方法将分割时间从26分钟减少到了8秒。在定性评估中,79%的病例分割质量被评为良好,15%为中等,6%为较差。在间接评估中,仅参考自动化分割的结果,93.4%(99/106)的病变能够被分配到正确的段。

结论

所提出的模型可作为MRI图像上肝脏自动解剖区域标注的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f4c/8873293/7ae14ae2f608/13244_2022_1163_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验