Suppr超能文献

用于视频眼震图中低对比度图像的扭转眼动计算算法。

A torsional eye movement calculation algorithm for low contrast images in video-oculography.

作者信息

Jansen S H, Kingma H, Peeters R M, Westra R L

机构信息

Department of Knowledge Engineering, Maastricht University, The Netherlands.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5628-31. doi: 10.1109/IEMBS.2010.5628040.

Abstract

Video-oculography (VOG) is a frequently used clinical technique to detect eye movements. In this research, head mounted small video-cameras and IR-illumination are employed to image the eye. Many algorithms have been developed to extract horizontal and vertical eye movements from the video images. Designing a method to determine torsional eye movements is a more complex task. The use of IR-wavelengths required for illumination in certain clinical tests results in a very low image contrast. In such images, iris textures are almost invisible, making them unsuited for direct application of standard matching algorithms, which are used to calculate torsional eye movements. This research presents the design and implementation of a robust torsional eye movement detection algorithm for VOG. This algorithm uses a new approach to measure the torsional eye movement and is suitable for low contrast videos. The algorithm is implemented in a clinical device and its performance is compared to that of alternative techniques.

摘要

视频眼动描记术(VOG)是一种常用的检测眼球运动的临床技术。在本研究中,使用头戴式小型摄像机和红外照明对眼睛进行成像。已经开发了许多算法来从视频图像中提取水平和垂直眼球运动。设计一种确定眼球扭转运动的方法是一项更为复杂的任务。在某些临床试验中,照明所需的红外波长的使用导致图像对比度非常低。在这类图像中,虹膜纹理几乎不可见,这使得它们不适用于直接应用用于计算眼球扭转运动的标准匹配算法。本研究提出了一种用于VOG的鲁棒眼球扭转运动检测算法的设计与实现。该算法采用一种新方法来测量眼球扭转运动,适用于低对比度视频。该算法在临床设备中实现,并将其性能与其他技术进行比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验