Institut für Neurophysiologie, Medizinische Hochschule, D-30625 Hannover, Germany.
J Biol Chem. 2011 Jan 21;286(3):1927-37. doi: 10.1074/jbc.M110.153486. Epub 2010 Nov 19.
Excitatory amino acid transporter 2 (EAAT2) is a high affinity glutamate transporter predominantly expressed in astroglia. Human EAAT2 encompasses eight transmembrane domains and a 74-amino acid C-terminal domain that resides in the cytoplasm. We examined the role of this region by studying various C-terminal truncations and mutations using heterologous expression in mammalian cells, whole-cell patch clamp recording and confocal imaging. Removal of the complete C terminus (K498X EAAT2) results in loss of function because of intracellular retention of truncated proteins in the cytoplasm. However, a short stretch of amino acids (E500X EAAT2) within the C terminus results in correctly processed transporters. E500X reduced glutamate transport currents by 90%. Moreover, the voltage and substrate dependence of E500X EAAT2 anion currents was significantly altered. WT and mutant EAAT2 anion channels are modified by external Na(+) in the presence as well as in the absence of L-glutamate. Whereas Na(+) stimulates EAAT2 anion currents in the presence of L-glutamate, increased [Na(+)] reduces such currents without glutamate. In cells internally dialyzed with Na(+), WT, and truncated EAAT2 display comparable Na(+) dependence. With K(+) as main internal cation, E500X drastically increased the apparent dissociation constant for external Na(+). The effects of E500X can be represented by a kinetic model that allows translocation of the empty transporter from the outward- to the inward-facing conformation and stabilization of the inward-facing conformation by internal K(+). Our results demonstrate that the C terminus modifies the glutamate uptake cycle, possibly affecting the movements of the translocation domain of EAAT2 glutamate transporter.
兴奋性氨基酸转运体 2(EAAT2)是一种高亲和力的谷氨酸转运体,主要在星形胶质细胞中表达。人 EAAT2 包含八个跨膜结构域和一个位于细胞质中的 74 个氨基酸的 C 末端结构域。我们通过在哺乳动物细胞中的异源表达、全细胞膜片钳记录和共聚焦成像研究了该区域的各种 C 末端截断和突变,从而研究了该区域的作用。由于细胞质中截断蛋白的细胞内保留,完整 C 端的缺失(K498X EAAT2)导致功能丧失。然而,C 端的一小段氨基酸(E500X EAAT2)导致正确加工的转运体。E500X 将谷氨酸转运电流减少了 90%。此外,E500X EAAT2 阴离子电流的电压和底物依赖性发生了显著改变。WT 和突变型 EAAT2 阴离子通道在存在和不存在 L-谷氨酸的情况下都可以被外部 Na(+)修饰。虽然 Na(+) 在存在 L-谷氨酸的情况下刺激 EAAT2 阴离子电流,但增加[Na(+)]会在没有谷氨酸的情况下降低这种电流。在内部用 Na(+) 透析的细胞中,WT 和截断的 EAAT2 显示出类似的 Na(+)依赖性。用 K(+) 作为主要的内部阳离子,E500X 极大地增加了外部 Na(+)的表观解离常数。E500X 的影响可以用一个动力学模型来表示,该模型允许空转运体从外向到内向构象的转运,并通过内部 K(+)稳定内向构象。我们的结果表明,C 末端修饰了谷氨酸摄取循环,可能影响 EAAT2 谷氨酸转运体的转运结构域的运动。