Suppr超能文献

F1 区在大肠杆菌趋氧受体 Aer 中的作用。

Role of the F1 region in the Escherichia coli aerotaxis receptor Aer.

机构信息

Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA.

出版信息

J Bacteriol. 2011 Jan;193(2):358-66. doi: 10.1128/JB.01028-10. Epub 2010 Nov 19.

Abstract

In Escherichia coli, the aerotaxis receptor Aer is an atypical receptor because it senses intracellular redox potential. The Aer sensor is a cytoplasmic, N-terminal PAS domain that is tethered to the membrane by a 47-residue F1 linker. Here we investigated the function, topology, and orientation of F1 by employing random mutagenesis, cysteine scanning, and disulfide cross-linking. No native residue was obligatory for function, most deleterious substitutions had radically different side chain properties, and all F1 mutants but one were functionally rescued by the chemoreceptor Tar. Cross-linking studies were consistent with the predicted α-helical structure in the N-terminal F1 region and demonstrated trigonal interactions among the F1 linkers from three Aer monomers, presumably within trimer-of-dimer units, as well as binary interactions between subunits. Using heterodimer analyses, we also demonstrated the importance of arginine residues near the membrane interface, which may properly anchor the Aer protein in the membrane. By incorporating these data into a homology model of Aer, we developed a model for the orientation of the Aer F1 and PAS regions in an Aer lattice that is compatible with the known dimensions of the chemoreceptor lattice. We propose that the F1 region facilitates the orientation of PAS and HAMP domains during folding and thereby promotes the stability of the PAS and HAMP domains in Aer.

摘要

在大肠杆菌中,趋化性受体 Aer 是一种非典型受体,因为它能感应细胞内的氧化还原电位。Aer 传感器是一种细胞质中的 N 端 PAS 结构域,通过一个由 47 个残基组成的 F1 接头与膜相连。在这里,我们通过随机诱变、半胱氨酸扫描和二硫键交联研究了 F1 的功能、拓扑结构和取向。没有必需的天然残基发挥功能,大多数有害取代具有截然不同的侧链性质,除了一个 F1 突变体外,所有 F1 突变体都被趋化受体 Tar 功能挽救。交联研究与 N 端 F1 区域的预测α-螺旋结构一致,并证明了三个 Aer 单体的 F1 接头之间存在三角相互作用,可能在三聚体二聚体单元内,以及亚基之间的二元相互作用。通过异二聚体分析,我们还证明了靠近膜界面的精氨酸残基的重要性,这些残基可能将 Aer 蛋白正确地锚定在膜上。我们将这些数据纳入 Aer 的同源模型中,为 Aer 晶格中 Aer F1 和 PAS 区域的取向建立了一个模型,该模型与已知的趋化受体晶格的尺寸兼容。我们提出,F1 区域有助于 PAS 和 HAMP 结构域在折叠过程中的取向,从而促进 Aer 中 PAS 和 HAMP 结构域的稳定性。

相似文献

本文引用的文献

2
Universal architecture of bacterial chemoreceptor arrays.细菌趋化性受体阵列的通用结构。
Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17181-6. doi: 10.1073/pnas.0905181106. Epub 2009 Sep 23.
5
Bacterial chemoreceptors: high-performance signaling in networked arrays.细菌化学感受器:网络化阵列中的高效信号传导
Trends Biochem Sci. 2008 Jan;33(1):9-19. doi: 10.1016/j.tibs.2007.09.014. Epub 2007 Dec 31.
6
Clustal W and Clustal X version 2.0.Clustal W和Clustal X 2.0版本
Bioinformatics. 2007 Nov 1;23(21):2947-8. doi: 10.1093/bioinformatics/btm404. Epub 2007 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验