Gosink Khoosheh K, Burón-Barral Maria del Carmen, Parkinson John S
Biology Department, University of Utah, Salt Lake City, 84112, USA.
J Bacteriol. 2006 May;188(10):3487-93. doi: 10.1128/JB.188.10.3487-3493.2006.
Aer, a low-abundance signal transducer in Escherichia coli, mediates robust aerotactic behavior, possibly through interactions with methyl-accepting chemotaxis proteins (MCP). We obtained evidence for interactions between Aer and the high-abundance aspartate (Tar) and serine (Tsr) receptors. Aer molecules bearing a cysteine reporter diagnostic for trimer-of-dimer formation yielded cross-linking products upon treatment with a trifunctional maleimide reagent. Aer also formed mixed cross-linking products with a similarly marked Tar reporter. An Aer trimer contact mutation known to abolish trimer formation by MCPs eliminated Aer trimer and mixed trimer formation. Trimer contact alterations known to cause epistatic behavior in MCPs also produced epistatic properties in Aer. Amino acid replacements in the Tar trimer contact region suppressed an epistatic Aer signaling defect, consistent with compensatory conformational changes between directly interacting proteins. In cells lacking MCPs, Aer function required high-level expression, comparable to the aggregate number of receptors in a wild-type cell. Aer proteins with clockwise (CW)-biased signal output cannot function under these conditions but do so in the presence of MCPs, presumably through formation of mixed signaling teams. The Tar signaling domain was sufficient for functional rescue. Moreover, CW-biased lesions did not impair aerotactic signaling in a hybrid Aer-Tar transducer capable of adjusting its steady-state signal output via methylation-dependent sensory adaptation. Thus, MCPs most likely assist mutant Aer proteins to signal productively by forming collaborative signaling teams. Aer evidently evolved to operate collaboratively with high-abundance receptors but can also function without MCP assistance, provided that it can establish a suitable prestimulus swimming pattern.
Aer是大肠杆菌中一种低丰度信号转导蛋白,可能通过与甲基化趋化受体蛋白(MCP)相互作用介导强烈的趋氧行为。我们获得了Aer与高丰度的天冬氨酸(Tar)和丝氨酸(Tsr)受体之间相互作用的证据。带有用于诊断二聚体三聚体形成的半胱氨酸报告基团的Aer分子在用三功能马来酰亚胺试剂处理后产生交联产物。Aer还与类似标记的Tar报告基团形成混合交联产物。已知能消除MCP三聚体形成的Aer三聚体接触突变消除了Aer三聚体和混合三聚体的形成。已知会在MCP中引起上位性行为的三聚体接触改变也在Aer中产生了上位性特性。Tar三聚体接触区域中的氨基酸替换抑制了上位性Aer信号缺陷,这与直接相互作用的蛋白质之间的补偿性构象变化一致。在缺乏MCP的细胞中,Aer功能需要高水平表达,这与野生型细胞中受体的总数相当。具有顺时针(CW)偏向信号输出的Aer蛋白在这些条件下无法发挥作用,但在存在MCP的情况下可以发挥作用,大概是通过形成混合信号团队。Tar信号结构域足以实现功能拯救。此外,CW偏向损伤不会损害能够通过甲基化依赖性感官适应调节其稳态信号输出的杂交Aer-Tar转导器中的趋氧信号传导。因此,MCP最有可能通过形成协作信号团队来帮助突变的Aer蛋白有效发出信号。显然,Aer进化为与高丰度受体协同运作,但如果它能建立合适的刺激前游泳模式,也可以在没有MCP协助的情况下发挥作用。