Suppr超能文献

新方法结合分子和谱系关系。

New method to combine molecular and pedigree relationships.

机构信息

University of Liege, Gembloux Agro-Bio Tech, Animal Science Unit, 5030 Gembloux, Belgium.

出版信息

J Anim Sci. 2011 Apr;89(4):972-8. doi: 10.2527/jas.2010-3135. Epub 2010 Nov 19.

Abstract

Relationship coefficients are traditionally based on pedigree data. Today, with the development of molecular techniques, they are often completely replaced by coefficients calculated from molecular data. Examples are relationships from microsatellites for biodiversity studies but also genomic relationships from SNP as currently used in genomic prediction of breeding values. There are, however, many situations in which optimal combination of both sources would be the best solutions. Obviously, this is the case for incompletely genotyped populations, but also when pedigree information is sparse. Also, markers, even dense ones, do not reflect the whole genome and therefore give only an incomplete picture of relationships. The main objective of this study was therefore to develop a method to calculate a relationship matrix by the combination of molecular and pedigree data. It will be useful for all situations where pedigree and molecular data are available. In this study, based on simulations of pedigree and marker data, we used partial least squares regression and linear regression to combine total allelic relationship coefficients calculated for each marker with additive relationship coefficients calculated from incomplete pedigree. The results showed that the greatest advantage of this method, compared with the one that replaces a part of the pedigree-based relationship matrix by a genomic relationship matrix, is that adding the partial pedigree data allows for the correction of the molecular coefficient for the ungenotyped part of the genome.

摘要

关系系数传统上基于系谱数据。如今,随着分子技术的发展,它们通常完全被从分子数据计算得出的系数所取代。例如,用于生物多样性研究的微卫星的关系,以及目前用于育种值基因组预测的 SNP 的基因组关系。然而,在许多情况下,两种来源的最佳组合将是最佳解决方案。显然,这种情况适用于不完全基因分型的群体,也适用于系谱信息稀疏的情况。此外,标记物,即使是密集的标记物,也不能反映整个基因组,因此只能提供关系的不完整图像。因此,本研究的主要目的是开发一种通过组合分子和系谱数据来计算关系矩阵的方法。它将对所有可用系谱和分子数据的情况都有用。在本研究中,基于系谱和标记数据的模拟,我们使用偏最小二乘回归和线性回归,将为每个标记计算的总等位基因关系系数与从不完全系谱计算的加性关系系数相结合。结果表明,与用基因组关系矩阵替代部分系谱关系矩阵的方法相比,该方法的最大优势是添加部分系谱数据可以校正未基因分型基因组部分的分子系数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验