Department of Chemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, University of Waterloo, Waterloo, ON, Canada.
Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):20952-7. doi: 10.1073/pnas.1008026107. Epub 2010 Nov 19.
Myristoylation, the covalent linkage of a saturated, C(14) fatty acyl chain to the N-terminal glycine in a protein, plays a vital role in reversible membrane binding and signaling by the modified proteins. Currently, little is known about the effects of myristoylation on protein folding and stability, or about the energetics and molecular mechanisms of switching involving states with sequestered versus accessible myristoyl group. Our analysis of these effects in hisactophilin, a histidine-rich protein that binds cell membranes and actin in a pH-dependent manner, shows that myristoylation significantly increases hisactophilin stability, while also markedly increasing global protein folding and unfolding rates. The switching between sequestered and accessible states is pH dependent, with an apparent pK(switch) of 6.95, and an apparent free energy change of 2.0 kcal·mol(-1). The myristoyl switch is linked to the reversible uptake of ∼1.5 protons, likely by histidine residues. This pH dependence of switching appears to be the physical basis of the sensitive, pH-dependent regulation of membrane binding observed in vivo. We conclude that an increase in protein stability upon modification and burial of the attached group is likely to occur in numerous proteins modified with fatty acyl or other hydrophobic groups, and that the biophysical effects of such modification are likely to play an important role in their functional switches. In addition, the increased global dynamics caused by myristoylation of hisactophilin reveals a general mechanism whereby hydrophobic moieties can make nonnative interactions or relieve strain in transition states, thereby increasing the rates of interconversion between different states.
豆蔻酰化,即一个饱和的 C(14)脂肪酸链与蛋白质 N 端甘氨酸之间的共价连接,在被修饰蛋白质的可逆膜结合和信号转导中起着至关重要的作用。目前,人们对豆蔻酰化对蛋白质折叠和稳定性的影响,以及涉及隔离和可及豆蔻酰基状态的转换的能量学和分子机制知之甚少。我们在组蛋白富含蛋白 hisactophilin 中的这些效应的分析表明,豆蔻酰化显著增加了 hisactophilin 的稳定性,同时也显著增加了全局蛋白质折叠和展开的速率。隔离和可及状态之间的转换是 pH 依赖性的,表观 pK(switch)为 6.95,表观自由能变化为 2.0 kcal·mol(-1)。豆蔻酰开关与可逆摄取约 1.5 个质子相关,可能由组氨酸残基介导。这种转换的 pH 依赖性似乎是体内观察到的敏感、pH 依赖性膜结合调节的物理基础。我们得出结论,在许多被脂肪酸或其他疏水性基团修饰的蛋白质中,修饰和附着基团的埋藏会导致蛋白质稳定性的增加,并且这种修饰的生物物理效应可能在它们的功能转换中发挥重要作用。此外,hisactophilin 的豆蔻酰化引起的全局动力学增加揭示了一种普遍机制,其中疏水性部分可以形成非天然相互作用或在过渡态中缓解应变,从而增加不同状态之间的相互转换速率。