Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
J Biol Chem. 2011 Feb 11;286(6):4341-8. doi: 10.1074/jbc.M110.179747. Epub 2010 Nov 23.
Physical coupling of sarcoplasmic reticulum (SR) type 1 inositol 1,4,5-trisphosphate receptors (IP(3)R1) to plasma membrane canonical transient receptor potential 3 (TRPC3) channels activates a cation current (I(Cat)) in arterial smooth muscle cells that induces vasoconstriction. However, structural components that enable IP(3)R1 and TRPC3 channels to communicate locally are unclear. Caveolae are plasma membrane microdomains that can compartmentalize proteins. Here, we tested the hypothesis that caveolae and specifically caveolin-1 (cav-1), a caveolae scaffolding protein, facilitate functional IP(3)R1 to TRPC3 coupling in smooth muscle cells of resistance-size cerebral arteries. Methyl-β-cyclodextrin (MβCD), which disassembles caveolae, reduced IP(3)-induced I(Cat) activation in smooth muscle cells and vasoconstriction in pressurized arteries. Cholesterol replenishment reversed these effects. Cav-1 knockdown using shRNA attenuated IP(3)-induced vasoconstriction, but did not alter TRPC3 and IP(3)R1 expression. A synthetic peptide corresponding to the cav-1 scaffolding domain (CSD) sequence (amino acids 82-101) also attenuated IP(3)-induced I(Cat) activation and vasoconstriction. A cav-1 antibody co-immunoprecipitated cav-1, TRPC3, and IP(3)R1 from cerebral artery lysate. ImmunoFRET indicated that cav-1, TRPC3 channels and IP(3)R1 are spatially co-localized in arterial smooth muscle cells. IP(3)R1 and TRPC3 channel spatial localization was disrupted by MβCD and a CSD peptide. Cholesterol replenishment re-established IP(3)R1 and TRPC3 channel close spatial proximity. Taken together, these data indicate that in arterial smooth muscle cells, cav-1 co-localizes SR IP(3)R1 and plasma membrane TRPC3 channels in close spatial proximity thereby enabling IP(3)-induced physical coupling of these proteins, leading to I(Cat) generation and vasoconstriction.
肌浆网(SR)1 型肌醇 1,4,5-三磷酸受体(IP(3)R1)与质膜经典瞬时受体电位 3(TRPC3)通道的物理偶联激活动脉平滑肌细胞中的阳离子电流(I(Cat)),导致血管收缩。然而,使 IP(3)R1 和 TRPC3 通道能够局部通讯的结构成分尚不清楚。小窝是可以分隔蛋白质的质膜微区。在这里,我们测试了这样一个假设,即小窝,特别是小窝蛋白-1(cav-1),一种小窝支架蛋白,促进了阻力大小脑动脉平滑肌细胞中 IP(3)R1 与 TRPC3 的功能偶联。甲基-β-环糊精(MβCD),一种可以拆散小窝的物质,降低了平滑肌细胞中 IP(3)诱导的 I(Cat)激活和加压动脉中的血管收缩。胆固醇补充逆转了这些效应。使用 shRNA 敲低 cav-1 减弱了 IP(3)诱导的血管收缩,但没有改变 TRPC3 和 IP(3)R1 的表达。与 cav-1 支架结构域(CSD)序列(氨基酸 82-101)相对应的合成肽也减弱了 IP(3)诱导的 I(Cat)激活和血管收缩。一种 cav-1 抗体从脑动脉裂解物中共同免疫沉淀了 cav-1、TRPC3 和 IP(3)R1。免疫荧光共振能量转移(ImmunoFRET)表明,cav-1、TRPC3 通道和 IP(3)R1 在动脉平滑肌细胞中空间上共定位。MβCD 和 CSD 肽破坏了 IP(3)R1 和 TRPC3 通道的空间定位。胆固醇补充重新建立了 IP(3)R1 和 TRPC3 通道的紧密空间接近。总之,这些数据表明,在动脉平滑肌细胞中,cav-1 将肌浆网 IP(3)R1 和质膜 TRPC3 通道共定位在紧密的空间接近处,从而使这些蛋白质发生 IP(3)诱导的物理偶联,导致 I(Cat)的产生和血管收缩。