Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China.
Nanotechnology. 2010 Dec 17;21(50):505709. doi: 10.1088/0957-4484/21/50/505709. Epub 2010 Nov 23.
The electronic properties of zinc-blende, wurtzite, and rotationally twinned InP nanowires were studied using first-principles calculations. The results show that all the simulated nanowires exhibit a semiconducting character, and the band gap decreases with increasing the nanowire size. The band gap difference between the zinc-blende, wurtzite, and twinned InP nanowires and bulk InP can be described by ΔE(g)(wire) = 0.88/D(1.23), ΔE(g)(wire) = 0.79/D(1.22) and ΔE(g)(twin) = 1.3/D(1.19), respectively, where D is the diameter of the nanowires. The valence band maximum (VBM) and conduction band minimum (CBM) originate mainly from the p-orbitals of the P atoms and s-orbitals of the In atoms at the core regions of the nanowires, respectively. The hexagonal (2H) stacking inside the cubic (3C) stacking has no effect on the electronic properties of thin InP nanowires.
使用第一性原理计算研究了闪锌矿、纤锌矿和旋转孪晶磷化铟纳米线的电子性质。结果表明,所有模拟的纳米线都表现出半导体性质,并且带隙随纳米线尺寸的增加而减小。闪锌矿、纤锌矿和孪晶磷化铟纳米线与体相磷化铟的能带隙差异可以用 ΔE(g)(wire) = 0.88/D(1.23)、ΔE(g)(wire) = 0.79/D(1.22) 和 ΔE(g)(twin) = 1.3/D(1.19) 来描述,其中 D 是纳米线的直径。价带顶(VBM)和导带底(CBM)主要来源于纳米线核心区域的 P 原子的 p 轨道和 In 原子的 s 轨道。立方(3C)堆垛中的六方(2H)堆垛对薄磷化铟纳米线的电子性质没有影响。