文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

靶向氧化铁颗粒用于体内磁共振检测氧化特异性表位抗体靶向的动脉粥样硬化病变。

Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes.

机构信息

Translational and Molecular Imaging Institute, Department of Radiology, Mount Sinai School of Medicine, New York, New York, USA.

出版信息

J Am Coll Cardiol. 2011 Jan 18;57(3):337-47. doi: 10.1016/j.jacc.2010.09.023. Epub 2010 Nov 23.


DOI:10.1016/j.jacc.2010.09.023
PMID:21106318
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3095034/
Abstract

OBJECTIVES: The aim of this study was to determine whether iron oxide particles targeted to oxidation-specific epitopes image atherosclerotic lesions. BACKGROUND: Oxidized low-density lipoprotein plays a major role in atherosclerotic plaque progression and destabilization. Prior studies indicate that gadolinium micelles labeled with oxidation-specific antibodies allow for in vivo detection of vulnerable plaques with magnetic resonance imaging (MRI). However, issues related to biotransformation/retention of gadolinium might limit clinical translation. Iron oxides are recognized as safe and effective contrast agents for MRI. Because the efficacy of passively targeted iron particles remains variable, it was hypothesized that iron particles targeted to oxidation-specific epitopes might increase the utility of this platform. METHODS: Lipid-coated ultra-small superparamagnetic iron particles (LUSPIOs) (<20 nm) and superparamagnetic iron particles (<40 nm) were conjugated with antibodies targeted to either malondialdehyde-lysine or oxidized phospholipid epitopes. All formulations were characterized, and their in vivo efficacy evaluated in apolipoprotein E deficient mice 24 h after bolus administration of a 3.9-mg Fe/kg dose with MRI. In vivo imaging data were correlated with the presence of oxidation-specific epitopes with immunohistochemistry. RESULTS: MRI of atherosclerotic lesions, as manifested by signal loss, was observed after administration of targeted LUSPIOs. Immunohistochemistry confirmed the presence of malondialdehyde-epitopes and iron particles. Limited signal attenuation was observed for untargeted LUSPIOs. Additionally, no significant arterial wall uptake was observed for targeted or untargeted lipid-coated superparamagnetic iron oxide particles, due to their limited ability to penetrate the vessel wall. CONCLUSIONS: This study demonstrates that LUSPIOs targeted to oxidation-specific epitopes image atherosclerotic lesions and suggests a clinically translatable platform for the detection of atherosclerotic plaque.

摘要

目的:本研究旨在确定针对氧化特异性表位的氧化铁颗粒是否能对动脉粥样硬化病变进行成像。

背景:氧化型低密度脂蛋白在动脉粥样硬化斑块的进展和不稳定中起着重要作用。先前的研究表明,用氧化特异性抗体标记的钆胶束允许用磁共振成像(MRI)对易损斑块进行体内检测。然而,与镧系元素的生物转化/保留相关的问题可能会限制临床转化。氧化铁被认为是磁共振成像的安全有效的对比剂。由于被动靶向铁颗粒的效果仍然存在差异,因此假设针对氧化特异性表位的铁颗粒可能会提高该平台的效用。

方法:脂质包被的超小超顺磁性氧化铁颗粒(LUSPIOs)(<20nm)和超顺磁性氧化铁颗粒(<40nm)与针对丙二醛-赖氨酸或氧化磷脂表位的抗体结合。所有制剂均进行了特征描述,并在载脂蛋白 E 缺陷小鼠中进行了体内研究,在给予 3.9mg Fe/kg 剂量的脂质包被的超小超顺磁性氧化铁颗粒后 24 小时,用 MRI 进行评估。体内成像数据与氧化特异性表位的免疫组化进行了相关性分析。

结果:给予靶向 LUSPIOs 后,动脉粥样硬化病变的 MRI 表现为信号丢失。免疫组化证实了丙二醛表位和铁颗粒的存在。未靶向 LUSPIOs 则观察到有限的信号衰减。此外,由于穿透血管壁的能力有限,靶向或未靶向的脂质包被超顺磁性氧化铁颗粒在动脉壁中均未观察到明显的摄取。

结论:本研究表明,针对氧化特异性表位的 LUSPIOs 可对动脉粥样硬化病变进行成像,并为检测动脉粥样硬化斑块提供了一种具有临床转化潜力的平台。

相似文献

[1]
Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes.

J Am Coll Cardiol. 2010-11-23

[2]
Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes.

Circulation. 2008-6-24

[3]
Manganese G8 dendrimers targeted to oxidation-specific epitopes: in vivo MR imaging of atherosclerosis.

J Magn Reson Imaging. 2015-3

[4]
In vivo detection of oxidation-specific epitopes in atherosclerotic lesions using biocompatible manganese molecular magnetic imaging probes.

J Am Coll Cardiol. 2012-2-7

[5]
Anti-malondialdehyde-modified low-density lipoprotein MDA2 monoclonal antibody–labeled lipid-coated ultra-small superparamagnetic iron oxide nanoparticles

2004

[6]
Imaging of oxidation-specific epitopes with targeted nanoparticles to detect high-risk atherosclerotic lesions: progress and future directions.

J Cardiovasc Transl Res. 2014-11

[7]
Targeted Molecular Iron Oxide Contrast Agents for Imaging Atherosclerotic Plaque.

Nanotheranostics. 2020

[8]
Imaging of the vulnerable carotid plaque: biological targeting of inflammation in atherosclerosis using iron oxide particles and MRI.

Eur J Vasc Endovasc Surg. 2014-5

[9]
Anti-malondialdehyde-modified low-density lipoprotein MDA2 monoclonal antibody–labeled lipid-coated superparamagnetic iron oxide nanoparticles

2004

[10]
OxLDL-targeted iron oxide nanoparticles for in vivo MRI detection of perivascular carotid collar induced atherosclerotic lesions in ApoE-deficient mice.

J Lipid Res. 2012-3-5

引用本文的文献

[1]
Biotransformation and biological fate of magnetic iron oxide nanoparticles for biomedical research and clinical applications.

Nanoscale Adv. 2025-3-24

[2]
Pharmacokinetic Profiling of Unlabeled Magnetic Nanoparticles Using Magnetic Particle Imaging as a Novel Cold Tracer Assay.

Nano Lett. 2024-12-11

[3]
Effective treatment of intractable diseases using nanoparticles to interfere with vascular supply and angiogenic process.

Eur J Med Res. 2022-11-4

[4]
Influence of Polymer Shell Molecular Weight on Functionalized Iron Oxide Nanoparticles Morphology and In Vivo Biodistribution.

Pharmaceutics. 2022-9-5

[5]
Recent advances in targeted delivery of non-coding RNA-based therapeutics for atherosclerosis.

Mol Ther. 2022-10-5

[6]
Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications.

J Nanobiotechnology. 2022-6-27

[7]
Activatable superparamagnetic iron oxide nanoparticles scavenge reactive oxygen species in macrophages and endothelial cells.

RSC Adv. 2020-11-12

[8]
An atherosclerotic plaque-targeted single-chain antibody for MR/NIR-II imaging of atherosclerosis and anti-atherosclerosis therapy.

J Nanobiotechnology. 2021-9-28

[9]
Chemically Modified Biomimetic Carbon-Coated Iron Nanoparticles for Stent Coatings: In Vitro Cytocompatibility and In Vivo Structural Changes in Human Atherosclerotic Plaques.

Biomedicines. 2021-7-12

[10]
Tetraphenylethylene-conjugated polycation covered iron oxide nanoparticles for magnetic resonance/optical dual-mode imaging.

Regen Biomater. 2021-6-14

本文引用的文献

[1]
A protein diffusion model of the sealing effect.

Chem Eng Sci. 2009-11-16

[2]
Oxidation-specific biomarkers, lipoprotein(a), and risk of fatal and nonfatal coronary events.

J Am Coll Cardiol. 2010-9-14

[3]
The role of innate immunity in atherogenesis.

J Lipid Res. 2009-4

[4]
Serial in vivo positive contrast MRI of iron oxide-labeled embryonic stem cell-derived cardiac precursor cells in a mouse model of myocardial infarction.

Magn Reson Med. 2008-7

[5]
Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes.

Circulation. 2008-6-24

[6]
Fractionated Feridex and positive contrast: in vivo MR imaging of atherosclerosis.

Magn Reson Med. 2008-4

[7]
Nanotemplate-engineered nanoparticles containing gadolinium for magnetic resonance imaging of tumors.

Invest Radiol. 2008-2

[8]
Safety update on the possible causal relationship between gadolinium-containing MRI agents and nephrogenic systemic fibrosis.

J Magn Reson Imaging. 2007-5

[9]
Detection and treatment of vulnerable plaques and vulnerable patients: novel approaches to prevention of coronary events.

Circulation. 2006-11-28

[10]
Oxidative biomarkers in the diagnosis and prognosis of cardiovascular disease.

Am J Cardiol. 2006-12-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索