文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

医用磁性氧化铁纳米颗粒的药代动力学。

Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications.

机构信息

Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516, Zielona Gora, Poland.

出版信息

J Nanobiotechnology. 2022 Jun 27;20(1):305. doi: 10.1186/s12951-022-01510-w.


DOI:10.1186/s12951-022-01510-w
PMID:35761279
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9235206/
Abstract

Magnetic iron oxide nanoparticles (MNPs) have been under intense investigation for at least the last five decades as they show enormous potential for many biomedical applications, such as biomolecule separation, MRI imaging and hyperthermia. Moreover, a large area of research on these nanostructures is concerned with their use as carriers of drugs, nucleic acids, peptides and other biologically active compounds, often leading to the development of targeted therapies. The uniqueness of MNPs is due to their nanometric size and unique magnetic properties. In addition, iron ions, which, along with oxygen, are a part of the MNPs, belong to the trace elements in the body. Therefore, after digesting MNPs in lysosomes, iron ions are incorporated into the natural circulation of this element in the body, which reduces the risk of excessive storage of nanoparticles. Still, one of the key issues for the therapeutic applications of magnetic nanoparticles is their pharmacokinetics which is reflected in the circulation time of MNPs in the bloodstream. These characteristics depend on many factors, such as the size and charge of MNPs, the nature of the polymers and any molecules attached to their surface, and other. Since the pharmacokinetics depends on the resultant of the physicochemical properties of nanoparticles, research should be carried out individually for all the nanostructures designed. Almost every year there are new reports on the results of studies on the pharmacokinetics of specific magnetic nanoparticles, thus it is very important to follow the achievements on this matter. This paper reviews the latest findings in this field. The mechanism of action of the mononuclear phagocytic system and the half-lives of a wide range of nanostructures are presented. Moreover, factors affecting clearance such as hydrodynamic and core size, core morphology and coatings molecules, surface charge and technical aspects have been described.

摘要

磁性氧化铁纳米粒子(MNPs)作为许多生物医学应用的潜在材料,如生物分子分离、MRI 成像和热疗,已经受到了至少过去五十年的深入研究。此外,这些纳米结构的一个重要研究领域是它们作为药物、核酸、肽和其他生物活性化合物载体的应用,这通常会导致靶向治疗的发展。MNPs 的独特之处在于其纳米尺寸和独特的磁性。此外,铁离子与氧一起是 MNPs 的一部分,属于体内的微量元素。因此,MNPs 在溶酶体中被消化后,铁离子被纳入体内该元素的自然循环中,从而降低了纳米颗粒过度储存的风险。然而,磁性纳米粒子治疗应用的一个关键问题是它们的药代动力学,这反映在 MNPs 在血液中的循环时间上。这些特性取决于许多因素,如 MNPs 的大小和电荷、聚合物的性质以及附着在其表面的任何分子等。由于药代动力学取决于纳米粒子的物理化学特性的综合结果,因此应该针对设计的所有纳米结构单独进行研究。几乎每年都有关于特定磁性纳米粒子药代动力学研究结果的新报告,因此关注这方面的最新进展非常重要。本文综述了该领域的最新研究结果。介绍了单核吞噬细胞系统的作用机制和广泛的纳米结构的半衰期。此外,还描述了影响清除的因素,如流体动力学和核心尺寸、核心形态和涂层分子、表面电荷和技术方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ee/9235206/61f1e0e43043/12951_2022_1510_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ee/9235206/8ec986abd1de/12951_2022_1510_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ee/9235206/ab23fb719f94/12951_2022_1510_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ee/9235206/e896cc48b6cc/12951_2022_1510_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ee/9235206/3556186a4ab4/12951_2022_1510_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ee/9235206/8c16ab9b48c2/12951_2022_1510_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ee/9235206/39212f99d98e/12951_2022_1510_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ee/9235206/31e2b60571e6/12951_2022_1510_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ee/9235206/61f1e0e43043/12951_2022_1510_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ee/9235206/8ec986abd1de/12951_2022_1510_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ee/9235206/ab23fb719f94/12951_2022_1510_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ee/9235206/e896cc48b6cc/12951_2022_1510_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ee/9235206/3556186a4ab4/12951_2022_1510_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ee/9235206/8c16ab9b48c2/12951_2022_1510_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ee/9235206/39212f99d98e/12951_2022_1510_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ee/9235206/31e2b60571e6/12951_2022_1510_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ee/9235206/61f1e0e43043/12951_2022_1510_Fig8_HTML.jpg

相似文献

[1]
Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications.

J Nanobiotechnology. 2022-6-27

[2]
Biomedical applications of biodegradable polycaprolactone-functionalized magnetic iron oxides nanoparticles and their polymer nanocomposites.

Colloids Surf B Biointerfaces. 2023-7

[3]
Magnetic Nanoparticles for Biomedical Applications: From the Soul of the Earth to the Deep History of Ourselves.

ACS Appl Bio Mater. 2021-8-16

[4]
Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: A review.

Artif Organs. 2021-11

[5]
In vivo Biodistribution and Clearance of Magnetic Iron Oxide Nanoparticles for Medical Applications.

Int J Nanomedicine. 2023

[6]
Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications.

Molecules. 2013-6-27

[7]
Current investigations into magnetic nanoparticles for biomedical applications.

J Biomed Mater Res A. 2016-5

[8]
Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications.

Small. 2024-2

[9]
Selective Magnetic Nanoheating: Combining Iron Oxide Nanoparticles for Multi-Hot-Spot Induction and Sequential Regulation.

Nano Lett. 2021-9-8

[10]
Controlling the Movement of Magnetic Iron Oxide Nanoparticles Intended for Targeted Delivery of Cytostatics.

Int J Nanomedicine. 2021

引用本文的文献

[1]
Biosynthesis of iron oxide nanoparticles (FeONPs) using (L.) Hallier f. leaf extract; Their antibacterial, antioxidant, anti-inflammatory, anticancer activity on against MCF-7 breast cancer cell lines and Photocatalytic degradation.

3 Biotech. 2025-7

[2]
Promising biomedical applications using superparamagnetic nanoparticles.

Eur J Med Res. 2025-6-2

[3]
Identification of oncogenes associated with colorectal cancer mortality and the effect of cinnamon-conjugated magnetic nanoparticles on their expression.

Sci Rep. 2025-5-20

[4]
Imaging-guided precision hyperthermia with magnetic nanoparticles.

Nat Rev Bioeng. 2025-3

[5]
Biotransformation and biological fate of magnetic iron oxide nanoparticles for biomedical research and clinical applications.

Nanoscale Adv. 2025-3-24

[6]
Double-Layer Magnetic Microspheres with Dual Drug Delivery of Antibacterial and Maintenance Agents for the Treatment of Vaginitis.

ACS Omega. 2025-3-12

[7]
Iron oxide nanoparticles induce ferroptosis under mild oxidative stress in vitro.

Sci Rep. 2024-12-28

[8]
Recent advancements and clinical aspects of engineered iron oxide nanoplatforms for magnetic hyperthermia-induced cancer therapy.

Mater Today Bio. 2024-11-28

[9]
Pharmacokinetic Profiling of Unlabeled Magnetic Nanoparticles Using Magnetic Particle Imaging as a Novel Cold Tracer Assay.

Nano Lett. 2024-12-11

[10]
Amphoteric β-cyclodextrin coated iron oxide magnetic nanoparticles: new insights into synthesis and application in MRI.

Nanoscale Adv. 2024-11-4

本文引用的文献

[1]
In Vitro and In Vivo Evaluation of PEGylated Starch-Coated Iron Oxide Nanoparticles for Enhanced Photothermal Cancer Therapy.

Pharmaceutics. 2021-6-12

[2]
Tailored Magnetic Multicore Nanoparticles for Use as Blood Pool MPI Tracers.

Nanomaterials (Basel). 2021-6-10

[3]
Long circulating tracer tailored for magnetic particle imaging.

Nanotheranostics. 2021

[4]
Optimization, Characterization and in vivo Evaluation of Paclitaxel-Loaded Folate-Conjugated Superparamagnetic Iron Oxide Nanoparticles.

Int J Nanomedicine. 2021

[5]
Fabrication of monodisperse magnetic nanorods for improving hyperthermia efficacy.

J Nanobiotechnology. 2021-3-1

[6]
siRNA Delivery with Stem Cell Membrane-Coated Magnetic Nanoparticles for Imaging-Guided Photothermal Therapy and Gene Therapy.

ACS Biomater Sci Eng. 2018-11-12

[7]
Positron Emission Tomography Imaging of the Endocannabinoid System: Opportunities and Challenges in Radiotracer Development.

J Med Chem. 2021-1-14

[8]
In vivo blockade of mononuclear phagocyte system with solid nanoparticles: Efficiency and affecting factors.

J Control Release. 2021-2-10

[9]
Ferromagnetic resonance in single vertices and 2D lattices macro-dipoles of elongated nanoelements: measurements and simulations.

J Phys Condens Matter. 2021-2-10

[10]
Sensitive SQUID Bio-Magnetometry for Determination and Differentiation of Biogenic Iron and Iron Oxide Nanoparticles in the Biological Samples.

Nanomaterials (Basel). 2020-10-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索