Department of Anatomy and Neurobiology, Washington University, 660 South Euclid Avenue, PO Box 8108, St Louis, MO 63110, USA.
Proc Biol Sci. 2011 Jun 22;278(1713):1903-12. doi: 10.1098/rspb.2010.2113. Epub 2010 Nov 24.
A basic assumption of the Darwinian theory of evolution is that heritable variation arises randomly. In this context, randomness means that mutations arise irrespective of the current adaptive needs imposed by the environment. It is broadly accepted, however, that phenotypic variation is not uniformly distributed among phenotypic traits, some traits tend to covary, while others vary independently, and again others barely vary at all. Furthermore, it is well established that patterns of trait variation differ among species. Specifically, traits that serve different functions tend to be less correlated, as for instance forelimbs and hind limbs in bats and humans, compared with the limbs of quadrupedal mammals. Recently, a novel class of genetic elements has been identified in mouse gene-mapping studies that modify correlations among quantitative traits. These loci are called relationship loci, or relationship Quantitative Trait Loci (rQTL), and affect trait correlations by changing the expression of the existing genetic variation through gene interaction. Here, we present a population genetic model of how natural selection acts on rQTL. Contrary to the usual neo-Darwinian theory, in this model, new heritable phenotypic variation is produced along the selected dimension in response to directional selection. The results predict that selection on rQTL leads to higher correlations among traits that are simultaneously under directional selection. On the other hand, traits that are not simultaneously under directional selection are predicted to evolve lower correlations. These results and the previously demonstrated existence of rQTL variation, show a mechanism by which natural selection can directly enhance the evolvability of complex organisms along lines of adaptive change.
达尔文进化论的一个基本假设是,可遗传的变异是随机产生的。在这种情况下,随机性是指突变的产生与环境施加的当前适应性需求无关。然而,人们普遍认为,表型变异并不是在所有表型特征中均匀分布的,一些特征倾向于共同变化,而另一些特征则独立变化,还有一些特征几乎没有变化。此外,物种之间的特征变异模式也存在差异,这一点已得到充分证实。具体来说,不同功能的特征往往相关性较低,例如蝙蝠和人类的前肢和后肢,与四足哺乳动物的四肢相比。最近,在老鼠基因图谱研究中发现了一类新的遗传元件,这些元件可以改变数量性状之间的相关性。这些基因座被称为关系基因座,或关系数量性状基因座(rQTL),通过基因相互作用改变现有遗传变异的表达,从而影响性状相关性。在这里,我们提出了一个自然选择作用于 rQTL 的群体遗传模型。与通常的新达尔文主义理论相反,在这个模型中,新的可遗传表型变异是沿着被选择的维度产生的,以响应定向选择。结果表明,rQTL 的选择导致同时受到定向选择的性状之间的相关性更高。另一方面,没有同时受到定向选择的性状则预测会进化出更低的相关性。这些结果以及之前证明的 rQTL 变异的存在表明,自然选择可以通过直接增强复杂生物沿着适应变化的路线的可进化性,从而产生一种机制。
Proc Biol Sci. 2010-11-24
Evolution. 2007-4
Proc Natl Acad Sci U S A. 2002-9-17
J Exp Zool B Mol Dev Evol. 2011-4-1
Proc Biol Sci. 2016-11-30
Elife. 2023-8-31
Proc Natl Acad Sci U S A. 2015-1-13
Proc Natl Acad Sci U S A. 2025-6-24
Front Cell Dev Biol. 2024-10-16
Development. 2024-10-15
Genetics. 2024-4-3
Evolution. 1996-10
Evolution. 1983-11
Genetics. 2010-6-1
Proc Natl Acad Sci U S A. 2010-2-1
Evolution. 2009-11-26
Genet Sel Evol. 2009-9-23