Center for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, Norway.
J Exp Zool B Mol Dev Evol. 2011 Jul 15;316(5):371-85. doi: 10.1002/jez.b.21410. Epub 2011 Apr 1.
The genotype-phenotype (GP) map consists of developmental and physiological mechanisms mapping genetic onto phenotypic variation. It determines the distribution of heritable phenotypic variance on which selection can act. Comparative studies of morphology as well as of gene regulatory networks show that the GP map itself evolves, yet little is known about the actual evolutionary mechanisms involved. The study of such mechanisms requires exploring the variation in GP maps at the population level, which presently is easier to quantify by statistical genetic methods rather than by regulatory network structures. We focus on the evolution of pleiotropy, a major structural aspect of the GP map. Pleiotropic genes affect multiple traits and underlie genetic covariance between traits, often causing evolutionary constraints. Previous quantitative genetic studies have demonstrated population-level variation in pleiotropy in the form of loci, at which genotypes differ in the genetic covariation between traits. This variation can potentially fuel evolution of the GP map under selection and/or drift. Here, we propose a developmental mechanism underlying population genetic variation in covariance and test its predictions. Specifically, the mechanism predicts that the loci identified as responsible for genetic variation in pleiotropy are involved in trait-specific epistatic interactions. We test this prediction for loci affecting allometric relationships between traits in an advanced intercross between inbred mouse strains. The results consistently support the prediction. We further find a high degree of sign epistasis in these interactions, which we interpret as an indication of adaptive gene complexes within the diverged parental lines.
基因型-表型(GP)图谱由将遗传映射到表型变异的发育和生理机制组成。它决定了可被选择作用的遗传表型方差的分布。形态学和基因调控网络的比较研究表明,GP 图谱本身在进化,但涉及的实际进化机制知之甚少。研究这些机制需要在群体水平上探索 GP 图谱的变化,目前通过统计遗传方法比通过调控网络结构更容易量化。我们专注于多效性的进化,这是 GP 图谱的主要结构方面。多效性基因影响多个性状,并为性状之间的遗传协方差奠定基础,通常会导致遗传约束。先前的定量遗传研究已经证明了群体水平上多效性的变异性,表现为在基因座上,基因型在性状之间的遗传协方差上存在差异。这种变异可以在选择和/或漂变下为 GP 图谱的进化提供潜在动力。在这里,我们提出了一个潜在的发育机制,用于解释协方差的群体遗传变异,并对其进行了测试。具体来说,该机制预测,被确定为多效性遗传变异的基因座参与了特定于性状的上位性相互作用。我们在近交系小鼠的高级杂交中测试了这些基因座对性状间比例关系的遗传变异的预测。结果一致支持这一预测。我们还发现这些相互作用中存在高度的符号上位性,我们将其解释为分化亲本系中适应性基因复合物的迹象。
J Exp Zool B Mol Dev Evol. 2011-4-1
Methods Mol Biol. 2021
J Exp Zool B Mol Dev Evol. 2004-9-15
Plant Biotechnol J. 2024-10
Nat Rev Genet. 2024-9
Arch Cardiol Mex. 2022-7-1
Trends Genet. 2020-1
Proc Natl Acad Sci U S A. 2019-6-19
Integr Comp Biol. 2019-11-1
Proc Biol Sci. 2010-11-24
Genome Res. 2010-10-26
Nat Genet. 2010-6-20
Obesity (Silver Spring). 2010-6-10
Genetics. 2010-6-1