Helsinki Bioenergetics Group, Structural Biology and Biophysics Programme, Institute of Biotechnology, University of Helsinki, PO Box 65, FI-00014 Helsinki, Finland.
Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21470-5. doi: 10.1073/pnas.1005889107. Epub 2010 Nov 24.
Cytochrome c oxidase (CcO) is the terminal enzyme of the respiratory chain that catalyzes respiratory reduction of dioxygen (O(2)) to water in all eukaryotes and many aerobic bacteria. CcO, and its homologs among the heme-copper oxidases, has an active site composed of an oxygen-binding heme and a copper center in the vicinity, plus another heme group that donates electrons to this site. In most oxidoreduction enzymes, electron transfer (eT) takes place by quantum-mechanical electron tunneling. Here we show by independent molecular dynamics and quantum-chemical methods that the heme-heme eT in CcO differs from the majority of cases in having an exceptionally low reorganization energy. We show that the rate of interheme eT in CcO may nevertheless be predicted by the Moser-Dutton equation if reinterpreted as the average of the eT rates between all individual atoms of the donor and acceptor weighed by the respective packing densities between them. We argue that this modification may be necessary at short donor/acceptor distances comparable to the donor/acceptor radii.
细胞色素 c 氧化酶(CcO)是呼吸链的末端酶,可催化所有真核生物和许多需氧细菌将二氧(O(2)) 呼吸还原为水。CcO 及其在血红素铜氧化酶中的同源物具有由氧结合血红素和附近铜中心组成的活性位点,外加另一个血红素基团向该位点供电子。在大多数氧化还原酶中,电子转移(eT)通过量子力学电子隧穿发生。在这里,我们通过独立的分子动力学和量子化学方法表明,CcO 中的血红素-血红素 eT 与大多数情况不同,具有异常低的重组能。我们表明,如果将其重新解释为供体和受体之间所有单个原子之间 eT 速率的平均值,并用它们之间的各自堆积密度加权,则 CcO 中的间血红素 eT 速率仍可通过 Moser-Dutton 方程预测。我们认为,在与供体/受体半径相当的短供体/受体距离处,这种修饰可能是必要的。