Vinther Frank, Andersen Morten, Ottesen Johnny T
Roskilde University, NSM Building 27, 4000, Roskilde, Denmark.
J Math Biol. 2011 Oct;63(4):663-90. doi: 10.1007/s00285-010-0384-2. Epub 2010 Nov 24.
This paper concerns ODE modeling of the hypothalamic-pituitary- adrenal axis (HPA axis) using an analytical and numerical approach, combined with biological knowledge regarding physiological mechanisms and parameters. The three hormones, CRH, ACTH, and cortisol, which interact in the HPA axis are modeled as a system of three coupled, nonlinear differential equations. Experimental data shows the circadian as well as the ultradian rhythm. This paper focuses on the ultradian rhythm. The ultradian rhythm can mathematically be explained by oscillating solutions. Oscillating solutions to an ODE emerges from an unstable fixed point with complex eigenvalues with a positive real parts and a non-zero imaginary parts. The first part of the paper describes the general considerations to be obeyed for a mathematical model of the HPA axis. In this paper we only include the most widely accepted mechanisms that influence the dynamics of the HPA axis, i.e. a negative feedback from cortisol on CRH and ACTH. Therefore we term our model the minimal model. The minimal model, encompasses a wide class of different realizations, obeying only a few physiologically reasonable demands. The results include the existence of a trapping region guaranteeing that concentrations do not become negative or tend to infinity. Furthermore, this treatment guarantees the existence of a unique fixed point. A change in local stability of the fixed point, from stable to unstable, implies a Hopf bifurcation; thereby, oscillating solutions may emerge from the model. Sufficient criteria for local stability of the fixed point, and an easily applicable sufficient criteria guaranteeing global stability of the fixed point, is formulated. If the latter is fulfilled, ultradian rhythm is an impossible outcome of the minimal model and all realizations thereof. The second part of the paper concerns a specific realization of the minimal model in which feedback functions are built explicitly using receptor dynamics. Using physiologically reasonable parameter values, along with the results of the general case, it is demonstrated that un-physiological values of the parameters are needed in order to achieve local instability of the fixed point. Small changes in physiologically relevant parameters cause the system to be globally stable using the analytical criteria. All simulations show a globally stable fixed point, ruling out periodic solutions even when an investigation of the 'worst case parameters' is performed.
本文运用解析和数值方法,结合有关生理机制和参数的生物学知识,对下丘脑 - 垂体 - 肾上腺轴(HPA轴)进行常微分方程建模。在HPA轴中相互作用的三种激素,即促肾上腺皮质激素释放激素(CRH)、促肾上腺皮质激素(ACTH)和皮质醇,被建模为一个由三个耦合的非线性微分方程组成的系统。实验数据显示了昼夜节律以及超日节律。本文重点关注超日节律。超日节律在数学上可以用振荡解来解释。常微分方程的振荡解源自一个具有正实部和非零虚部的复特征值的不稳定不动点。本文的第一部分描述了HPA轴数学模型应遵循的一般考虑因素。在本文中,我们只纳入了影响HPA轴动态的最广泛接受的机制,即皮质醇对CRH和ACTH的负反馈。因此,我们将我们的模型称为最小模型。最小模型涵盖了广泛的不同实现方式,仅遵循少数生理上合理的要求。结果包括存在一个捕获区域,可确保浓度不会变为负值或趋于无穷大。此外,这种处理保证了唯一不动点的存在。不动点局部稳定性从稳定变为不稳定意味着霍普夫分岔;因此,振荡解可能从模型中出现。制定了不动点局部稳定性的充分准则,以及一个易于应用的保证不动点全局稳定性的充分准则。如果满足后者,超日节律就不可能是最小模型及其所有实现方式的结果。本文的第二部分涉及最小模型的一种具体实现方式,其中反馈函数是使用受体动力学明确构建的。使用生理上合理的参数值以及一般情况的结果表明,为了实现不动点的局部不稳定性,需要非生理参数值。生理相关参数的微小变化会导致系统根据解析准则全局稳定。所有模拟都显示出全局稳定的不动点,即使在对“最坏情况参数”进行研究时也排除了周期解。