Cury Claire, Maurel Pierre, Gribonval Rémi, Barillot Christian
University of Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, Empenn Team ERL U 1228, Rennes, France.
University of Rennes, CNRS, Inria, IRISA UMR 6074, PANAMA Team, Rennes, France.
Front Neurosci. 2020 Jan 31;13:1451. doi: 10.3389/fnins.2019.01451. eCollection 2019.
Measures of brain activity through functional magnetic resonance imaging (fMRI) or electroencephalography (EEG), two complementary modalities, are ground solutions in the context of neurofeedback (NF) mechanisms for brain rehabilitation protocols. While NF-EEG (in which real-time neurofeedback scores are computed from EEG signals) has been explored for a very long time, NF-fMRI (in which real-time neurofeedback scores are computed from fMRI signals) appeared more recently and provides more robust results and more specific brain training. Using fMRI and EEG simultaneously for bi-modal neurofeedback sessions (NF-EEG-fMRI, in which real-time neurofeedback scores are computed from fMRI and EEG) is very promising for the design of brain rehabilitation protocols. However, fMRI is cumbersome and more exhausting for patients. The original contribution of this paper concerns the prediction of bi-modal NF scores from EEG recordings only, using a training phase where EEG signals as well as the NF-EEG and NF-fMRI scores are available. We propose a sparse regression model able to exploit EEG only to predict NF-fMRI or NF-EEG-fMRI in motor imagery tasks. We compared different NF-predictors stemming from the proposed model. We showed that predicting NF-fMRI scores from EEG signals adds information to NF-EEG scores and significantly improves the correlation with bi-modal NF sessions compared to classical NF-EEG scores.
通过功能磁共振成像(fMRI)或脑电图(EEG)来测量大脑活动,这两种互补的方式是脑康复方案的神经反馈(NF)机制中的基础解决方案。虽然NF-EEG(根据EEG信号计算实时神经反馈分数)已经被研究了很长时间,但NF-fMRI(根据fMRI信号计算实时神经反馈分数)出现得较晚,并且能提供更可靠的结果和更具针对性的大脑训练。同时使用fMRI和EEG进行双模态神经反馈训练(NF-EEG-fMRI,根据fMRI和EEG计算实时神经反馈分数)对于脑康复方案的设计非常有前景。然而,fMRI对患者来说操作繁琐且更耗精力。本文的原创贡献在于仅使用EEG记录来预测双模态NF分数,利用一个训练阶段,在此阶段EEG信号以及NF-EEG和NF-fMRI分数都是可用的。我们提出了一种稀疏回归模型,该模型能够仅利用EEG来预测运动想象任务中的NF-fMRI或NF-EEG-fMRI。我们比较了源于该模型的不同NF预测器。我们表明,根据EEG信号预测NF-fMRI分数能为NF-EEG分数增添信息,并且与传统的NF-EEG分数相比,能显著提高与双模态NF训练的相关性。