Suppr超能文献

通过癫痫性脑电图和功能磁共振成像数据的结构化分解,利用神经血管耦合生物标志物增强发作间期映射。

Augmenting interictal mapping with neurovascular coupling biomarkers by structured factorization of epileptic EEG and fMRI data.

作者信息

Van Eyndhoven Simon, Dupont Patrick, Tousseyn Simon, Vervliet Nico, Van Paesschen Wim, Van Huffel Sabine, Hunyadi Borbála

机构信息

Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Belgium.

Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute, Leuven, Belgium.

出版信息

Neuroimage. 2021 Mar;228:117652. doi: 10.1016/j.neuroimage.2020.117652. Epub 2020 Dec 24.

Abstract

EEG-correlated fMRI analysis is widely used to detect regional BOLD fluctuations that are synchronized to interictal epileptic discharges, which can provide evidence for localizing the ictal onset zone. However, the typical, asymmetrical and mass-univariate approach cannot capture the inherent, higher order structure in the EEG data, nor multivariate relations in the fMRI data, and it is nontrivial to accurately handle varying neurovascular coupling over patients and brain regions. We aim to overcome these drawbacks in a data-driven manner by means of a novel structured matrix-tensor factorization: the single-subject EEG data (represented as a third-order spectrogram tensor) and fMRI data (represented as a spatiotemporal BOLD signal matrix) are jointly decomposed into a superposition of several sources, characterized by space-time-frequency profiles. In the shared temporal mode, Toeplitz-structured factors account for a spatially specific, neurovascular 'bridge' between the EEG and fMRI temporal fluctuations, capturing the hemodynamic response's variability over brain regions. By analyzing interictal data from twelve patients, we show that the extracted source signatures provide a sensitive localization of the ictal onset zone (10/12). Moreover, complementary parts of the IOZ can be uncovered by inspecting those regions with the most deviant neurovascular coupling, as quantified by two entropy-like metrics of the hemodynamic response function waveforms (9/12). Hence, this multivariate, multimodal factorization provides two useful sets of EEG-fMRI biomarkers, which can assist the presurgical evaluation of epilepsy. We make all code required to perform the computations available at https://github.com/svaneynd/structured-cmtf.

摘要

脑电图相关功能磁共振成像分析被广泛用于检测与发作间期癫痫放电同步的局部脑血容量(BOLD)波动,这可为确定发作起始区提供证据。然而,典型的、不对称的单变量方法既无法捕捉脑电图数据中固有的高阶结构,也无法捕捉功能磁共振成像数据中的多变量关系,而且准确处理不同患者和脑区之间变化的神经血管耦合并非易事。我们旨在通过一种新颖的结构化矩阵张量分解以数据驱动的方式克服这些缺点:将单受试者脑电图数据(表示为三阶频谱图张量)和功能磁共振成像数据(表示为时空BOLD信号矩阵)联合分解为几个源的叠加,其特征为时空频率分布。在共享时间模式下,托普利兹结构因子解释了脑电图和功能磁共振成像时间波动之间空间特定的神经血管“桥梁”,捕捉了脑区血流动力学反应的变异性。通过分析12名患者的发作间期数据,我们表明提取的源特征提供了发作起始区的敏感定位(12例中有10例)。此外,通过检查血流动力学反应函数波形的两个类熵指标量化的神经血管耦合最异常的那些区域,可以发现发作起始区的互补部分(12例中有9例)。因此,这种多变量、多模态分解提供了两组有用的脑电图 - 功能磁共振成像生物标志物,可辅助癫痫的术前评估。我们将执行这些计算所需的所有代码发布在https://github.com/svaneynd/structured-cmtf上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f4f/7903163/fc4fe29a5762/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验