Shepherd Bryan E, Gilbert Peter B, Dupont Charles T
Department of Biostatistics, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, Tennessee 37232, USA.
Biometrics. 2011 Sep;67(3):1100-10. doi: 10.1111/j.1541-0420.2010.01508.x. Epub 2010 Nov 29.
In randomized studies researchers may be interested in the effect of treatment assignment on a time-to-event outcome that only exists in a subset selected after randomization. For example, in preventative HIV vaccine trials, it is of interest to determine whether randomization to vaccine affects the time from infection diagnosis until initiation of antiretroviral therapy. Earlier work assessed the effect of treatment on outcome among the principal stratum of individuals who would have been selected regardless of treatment assignment. These studies assumed monotonicity, that one of the principal strata was empty (e.g., every person infected in the vaccine arm would have been infected if randomized to placebo). Here, we present a sensitivity analysis approach for relaxing monotonicity with a time-to-event outcome. We also consider scenarios where selection is unknown for some subjects because of noninformative censoring (e.g., infection status k years after randomization is unknown for some because of staggered study entry). We illustrate our method using data from an HIV vaccine trial.
在随机研究中,研究人员可能对治疗分配对事件发生时间结局的影响感兴趣,而该结局仅存在于随机分组后选定的一个子集中。例如,在预防性HIV疫苗试验中,确定随机分配到疫苗组是否会影响从感染诊断到开始抗逆转录病毒治疗的时间是很有意义的。早期的研究评估了治疗对无论治疗分配如何都会被选中的个体主要层中结局的影响。这些研究假设了单调性,即其中一个主要层为空(例如,疫苗组中每一个感染的人如果被随机分配到安慰剂组也会被感染)。在此,我们提出一种敏感性分析方法,用于放宽对事件发生时间结局的单调性假设。我们还考虑了由于无信息删失导致一些受试者的选择情况未知的场景(例如,由于研究入组时间交错,随机分组k年后一些人的感染状态未知)。我们使用一项HIV疫苗试验的数据来说明我们的方法。