Suppr超能文献

利用协变量锐化主效应的界限。

Sharpening bounds on principal effects with covariates.

作者信息

Long Dustin M, Hudgens Michael G

机构信息

Department of Biostatistics, West Virginia University, Morgantown, West Virginia, 26506-9190, U.S.A.

出版信息

Biometrics. 2013 Dec;69(4):812-9. doi: 10.1111/biom.12103. Epub 2013 Nov 18.

Abstract

Estimation of treatment effects in randomized studies is often hampered by possible selection bias induced by conditioning on or adjusting for a variable measured post-randomization. One approach to obviate such selection bias is to consider inference about treatment effects within principal strata, that is, principal effects. A challenge with this approach is that without strong assumptions principal effects are not identifiable from the observable data. In settings where such assumptions are dubious, identifiable large sample bounds may be the preferred target of inference. In practice these bounds may be wide and not particularly informative. In this work we consider whether bounds on principal effects can be improved by adjusting for a categorical baseline covariate. Adjusted bounds are considered which are shown to never be wider than the unadjusted bounds. Necessary and sufficient conditions are given for which the adjusted bounds will be sharper (i.e., narrower) than the unadjusted bounds. The methods are illustrated using data from a recent, large study of interventions to prevent mother-to-child transmission of HIV through breastfeeding. Using a baseline covariate indicating low birth weight, the estimated adjusted bounds for the principal effect of interest are 63% narrower than the estimated unadjusted bounds.

摘要

在随机研究中,治疗效果的估计常常受到因对随机化后测量的变量进行条件设定或调整而可能产生的选择偏倚的阻碍。消除此类选择偏倚的一种方法是考虑在主要分层内推断治疗效果,即主要效应。这种方法面临的一个挑战是,在没有强假设的情况下,主要效应无法从可观测数据中识别出来。在这些假设存疑的情况下,可识别的大样本界限可能是推断的首选目标。在实际中,这些界限可能很宽且信息不多。在这项工作中,我们考虑是否可以通过对分类基线协变量进行调整来改进主要效应的界限。我们考虑了调整后的界限,结果表明其永远不会比未调整的界限更宽。给出了调整后的界限比未调整的界限更精确(即更窄)的充要条件。使用一项近期关于通过母乳喂养预防艾滋病毒母婴传播干预措施的大型研究数据对这些方法进行了说明。利用一个表明低出生体重的基线协变量,感兴趣的主要效应的估计调整界限比估计的未调整界限窄63%。

相似文献

1
Sharpening bounds on principal effects with covariates.
Biometrics. 2013 Dec;69(4):812-9. doi: 10.1111/biom.12103. Epub 2013 Nov 18.
5
Bounds on the average causal effects in randomized trials with noncompliance by covariate adjustment.
Biom J. 2016 Nov;58(6):1311-1318. doi: 10.1002/bimj.201500157. Epub 2016 Apr 9.
6
First population-level effectiveness evaluation of a national programme to prevent HIV transmission from mother to child, South Africa.
J Epidemiol Community Health. 2015 Mar;69(3):240-8. doi: 10.1136/jech-2014-204535. Epub 2014 Nov 4.
7
Effects of cessation of breastfeeding in HIV-1-exposed, uninfected children in Malawi.
Clin Infect Dis. 2011 Aug;53(4):388-95. doi: 10.1093/cid/cir413.
10
Changes in Fertility at the Population Level in the Era of ART in Rural Malawi.
J Acquir Immune Defic Syndr. 2017 Aug 1;75(4):391-398. doi: 10.1097/QAI.0000000000001395.

引用本文的文献

3
A Bayesian method for adverse effects estimation in observational studies with truncation by death.
Stat Methods Med Res. 2024 Nov;33(11-12):2079-2097. doi: 10.1177/09622802241283170. Epub 2024 Nov 5.
5
Causal inference for semi-competing risks data.
Biostatistics. 2022 Oct 14;23(4):1115-1132. doi: 10.1093/biostatistics/kxab049.
6
Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial.
J Causal Inference. 2020;8(1):54-69. doi: 10.1515/jci-2019-0022. Epub 2020 Jul 25.
7
Identification and estimation of causal effects with outcomes truncated by death.
Biometrika. 2017 Sep;104(3):597-612. doi: 10.1093/biomet/asx034. Epub 2017 Jul 11.
8
Surrogate Endpoint Evaluation: Principal Stratification Criteria and the Prentice Definition.
J Causal Inference. 2015 Sep 1;3(2):157-175. doi: 10.1515/jci-2014-0007. Epub 2015 Feb 1.
9
Nonparametric Bounds and Sensitivity Analysis of Treatment Effects.
Stat Sci. 2014 Nov;29(4):596-618. doi: 10.1214/14-STS499.

本文引用的文献

2
Principal stratification and attribution prohibition: good ideas taken too far.
Int J Biostat. 2011;7(1):Article 35. doi: 10.2202/1557-4679.1367. Epub 2011 Sep 14.
3
Randomization-Based Inference within Principal Strata.
J Am Stat Assoc. 2011 Jun;106(494):581-593. doi: 10.1198/jasa.2011.tm10356.
4
Principal stratification--uses and limitations.
Int J Biostat. 2011;7(1). doi: 10.2202/1557-4679.1329. Epub 2011 Jul 11.
5
Sensitivity analyses comparing time-to-event outcomes only existing in a subset selected postrandomization and relaxing monotonicity.
Biometrics. 2011 Sep;67(3):1100-10. doi: 10.1111/j.1541-0420.2010.01508.x. Epub 2010 Nov 29.
6
Maternal or infant antiretroviral drugs to reduce HIV-1 transmission.
N Engl J Med. 2010 Jun 17;362(24):2271-81. doi: 10.1056/NEJMoa0911486.
7
On the use of propensity scores in principal causal effect estimation.
Stat Med. 2009 Oct 15;28(23):2857-75. doi: 10.1002/sim.3669.
8
Causal Vaccine Effects on Binary Postinfection Outcomes.
J Am Stat Assoc. 2006 Mar;101(473):51-64. doi: 10.1198/016214505000000970.
9
On the analysis of viral load endpoints in HIV vaccine trials.
Stat Med. 2003 Jul 30;22(14):2281-98. doi: 10.1002/sim.1394.
10
Principal stratification in causal inference.
Biometrics. 2002 Mar;58(1):21-9. doi: 10.1111/j.0006-341x.2002.00021.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验