Suppr超能文献

迈向尖峰神经元放电数据的统计摘要。

Towards statistical summaries of spike train data.

机构信息

Department of Statistics, Florida State University, 117 N Woodward Avenue, Tallahassee, FL 32306-4330, USA.

出版信息

J Neurosci Methods. 2011 Jan 30;195(1):107-10. doi: 10.1016/j.jneumeth.2010.11.012. Epub 2010 Nov 27.

Abstract

Statistical inference has an important role in analysis of neural spike trains. While current approaches are mostly model-based, and designed for capturing the temporal evolution of the underlying stochastic processes, we focus on a data-driven approach where statistics are defined and computed in function spaces where individual spike trains are viewed as points. The first contribution of this paper is to endow spike train space with a parameterized family of metrics that takes into account different time warpings and generalizes several currently used metrics. These metrics are essentially penalized L(p) norms, involving appropriate functions of spike trains, with penalties associated with time-warpings. The second contribution of this paper is to derive a notion of a mean spike train in the case when p=2. We present an efficient recursive algorithm, termed Matching-Minimization algorithm, to compute the sample mean of a set of spike trains. The proposed metrics as well as the mean computations are demonstrated using an experimental recording from the motor cortex.

摘要

统计推断在神经尖峰列车分析中具有重要作用。虽然当前的方法主要是基于模型的,并设计用于捕获潜在随机过程的时间演变,但我们专注于一种数据驱动的方法,其中在功能空间中定义和计算统计信息,其中单个尖峰列车被视为点。本文的第一个贡献是赋予尖峰列车空间以参数化的度量族,该族考虑了不同的时间扭曲并推广了几种当前使用的度量。这些度量本质上是惩罚 L(p)范数,涉及尖峰列车的适当函数,并与时间扭曲相关联的惩罚。本文的第二个贡献是在 p=2 的情况下推导出尖峰列车的均值的概念。我们提出了一种称为匹配最小化算法的有效递归算法,用于计算一组尖峰列车的样本均值。所提出的度量以及均值计算使用来自运动皮层的实验记录进行了演示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验