Suppr超能文献

神经脉冲序列空间中统计推断的信息几何框架。

An information-geometric framework for statistical inferences in the neural spike train space.

作者信息

Wu Wei, Srivastava Anuj

机构信息

Department of Statistics, Florida State University, Tallahassee, FL 32306, USA.

出版信息

J Comput Neurosci. 2011 Nov;31(3):725-48. doi: 10.1007/s10827-011-0336-x. Epub 2011 May 17.

Abstract

Statistical inferences are essentially important in analyzing neural spike trains in computational neuroscience. Current approaches have followed a general inference paradigm where a parametric probability model is often used to characterize the temporal evolution of the underlying stochastic processes. To directly capture the overall variability and distribution in the space of the spike trains, we focus on a data-driven approach where statistics are defined and computed in the function space in which spike trains are viewed as individual points. To this end, we at first develop a parametrized family of metrics that takes into account different warpings in the time domain and generalizes several currently used spike train distances. These new metrics are essentially penalized L ( p ) norms, involving appropriate functions of spike trains, with penalties associated with time-warping. The notions of means and variances of spike trains are then defined based on the new metrics when p = 2 (corresponding to the "Euclidean distance"). Using some restrictive conditions, we present an efficient recursive algorithm, termed Matching-Minimization algorithm, to compute the sample mean of a set of spike trains with arbitrary numbers of spikes. The proposed metrics as well as the mean spike trains are demonstrated using simulations as well as an experimental recording from the motor cortex. It is found that all these methods achieve desirable performance and the results support the success of this novel framework.

摘要

在计算神经科学中分析神经脉冲序列时,统计推断至关重要。当前的方法遵循一种通用的推断范式,其中常使用参数概率模型来刻画潜在随机过程的时间演化。为了直接捕捉脉冲序列空间中的整体变异性和分布,我们专注于一种数据驱动的方法,即在将脉冲序列视为单个点的函数空间中定义和计算统计量。为此,我们首先开发了一族参数化的度量,该度量考虑了时域中的不同扭曲,并推广了几种当前使用的脉冲序列距离。这些新度量本质上是惩罚性的L(p)范数,涉及脉冲序列的适当函数,并带有与时间扭曲相关的惩罚。当p = 2时(对应于“欧几里得距离”),然后基于新度量定义脉冲序列的均值和方差概念。使用一些限制条件,我们提出了一种高效的递归算法,称为匹配最小化算法,用于计算具有任意数量脉冲的一组脉冲序列的样本均值。使用模拟以及来自运动皮层的实验记录展示了所提出的度量以及平均脉冲序列。结果发现所有这些方法都取得了理想的性能,并且这些结果支持了这个新颖框架的成功。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验