Suppr超能文献

三种特异性β(1,3)葡聚糖合酶抑制剂家族在裂殖酵母野生型和抗性菌株中的差异活性。

Differential activities of three families of specific beta(1,3)glucan synthase inhibitors in wild-type and resistant strains of fission yeast.

机构信息

Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain.

出版信息

J Biol Chem. 2011 Feb 4;286(5):3484-96. doi: 10.1074/jbc.M110.174300. Epub 2010 Nov 29.

Abstract

Three specific β(1,3)glucan synthase (GS) inhibitor families, papulacandins, acidic terpenoids, and echinocandins, have been analyzed in Schizosaccharomyces pombe wild-type and papulacandin-resistant cells and GS activities. Papulacandin and enfumafungin produced similar in vivo effects, different from that of echinocandins. Also, papulacandin was the strongest in vitro GS inhibitor (IC(50) 10(3)-10(4)-fold lower than with enfumafungin or pneumocandin), but caspofungin was by far the most efficient antifungal because of the following. 1) It was the only drug that affected resistant cells (minimal inhibitory concentration close to that of the wild type). 2) It was a strong inhibitor of wild-type GS (IC(50) close to that of papulacandin). 3) It was the best inhibitor of mutant GS. Moreover, caspofungin showed a special effect for two GS inhibition activities, of high and low affinity, separated by 2 log orders, with no increase in inhibition. pbr1-8 and pbr1-6 resistances are due to single substitutions in the essential Bgs4 GS, located close to the resistance hot spot 1 region described in Saccharomyces and Candida Fks mutants. Bgs4(pbr)(1-8) contains the E700V change, four residues N-terminal from hot spot 1 defining a larger resistance hot spot 1-1 of 13 amino acids. Bgs4(pbr)(1-6) contains the W760S substitution, defining a new resistance hot spot 1-2. We observed spontaneous revertants of the spherical pbr1-6 phenotype and found that an additional A914V change is involved in the recovery of the wild-type cell shape, but it maintains the resistance phenotype. A better understanding of the mechanism of action of the antifungals available should help to improve their activity and to identify new antifungal targets.

摘要

已分析了棘白菌素类化合物的三种特定β(1,3)葡聚糖合酶(GS)抑制剂家族,即:多球壳菌素、酸性萜烯和棘白菌素,在野生型裂殖酵母和多球壳菌素抗性细胞以及 GS 活性中。多球壳菌素和恩夫霉素产生了相似的体内作用,与棘白菌素不同。此外,多球壳菌素是体外最强的 GS 抑制剂(IC50 比恩夫霉素或泊沙康唑低 103-104 倍),但卡泊芬净迄今为止是最有效的抗真菌药物,原因如下。1)它是唯一一种影响抗性细胞的药物(最小抑菌浓度接近野生型)。2)它是野生型 GS 的强抑制剂(IC50 接近多球壳菌素)。3)它是突变型 GS 的最佳抑制剂。此外,卡泊芬净对两种 GS 抑制活性具有特殊作用,这两种活性的亲和力相差 2 个对数级,但抑制作用没有增加。pbr1-8 和 pbr1-6 抗性是由于基本 Bgs4 GS 中的单个取代,该基因位于与 Saccharomyces 和 Candida Fks 突变体中描述的抗性热点 1 区域附近。Bgs4(pbr)(1-8) 包含 E700V 变化,距离热点 1 四个残基 N 端,定义了 13 个氨基酸的更大的热点 1-1。Bgs4(pbr)(1-6) 包含 W760S 取代,定义了新的热点 1-2。我们观察到了 pbr1-6 球形表型的自发回复突变体,并发现 A914V 变化参与了恢复野生型细胞形态,但它保持了抗性表型。更好地了解现有抗真菌药物的作用机制应有助于提高其活性并确定新的抗真菌靶标。

相似文献

引用本文的文献

2
α-glucan remodeling by GH13-domain enzymes shapes fungal cell wall architecture.由GH13结构域酶介导的α-葡聚糖重塑塑造真菌细胞壁结构。
Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2505509122. doi: 10.1073/pnas.2505509122. Epub 2025 Jul 16.
5
Pathogenesis, Prophylaxis, and Treatment of .……的发病机制、预防与治疗
Biomedicines. 2024 Mar 1;12(3):561. doi: 10.3390/biomedicines12030561.

本文引用的文献

2
The echinocandins: three useful choices or three too many?棘白菌素类药物:三种有用的选择还是太多了?
Int J Antimicrob Agents. 2010 Jan;35(1):13-8. doi: 10.1016/j.ijantimicag.2009.09.011. Epub 2009 Nov 25.
3
Fungal echinocandin resistance.真菌棘白菌素耐药性。
Fungal Genet Biol. 2010 Feb;47(2):117-26. doi: 10.1016/j.fgb.2009.09.003. Epub 2009 Sep 19.
7
In search of the holy grail of antifungal therapy.寻找抗真菌治疗的圣杯。
Trans Am Clin Climatol Assoc. 2008;119:197-215; discussion 215-6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验