Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
Public Health Rep. 2010 Nov-Dec;125(6):843-50. doi: 10.1177/003335491012500611.
Electronic health records (EHRs) have the potential to improve completeness and timeliness of tuberculosis (TB) surveillance relative to traditional reporting, particularly for culture-negative disease. We report on the development and validation of a TB detection algorithm for EHR data followed by implementation in a live surveillance and reporting system.
We used structured electronic data from an ambulatory practice in eastern Massachusetts to develop a screening algorithm aimed at achieving 100% sensitivity for confirmed active TB with the highest possible positive predictive value (PPV) for physician-suspected disease. We validated the algorithm in 16 years of retrospective electronic data and then implemented it in a real-time EHR-based surveillance system. We assessed PPV and the completeness of case capture relative to conventional reporting in 18 months of prospective surveillance.
The final algorithm required a prescription for pyrazinamide, an International Classification of Diseases, Ninth Revision (ICD-9) code for TB and prescriptions for two antituberculous medications, or an ICD-9 code for TB and an order for a TB diagnostic test. During validation, this algorithm had a PPV of 84% (95% confidence interval 78, 88) for physician-suspected disease. One-third of confirmed cases were culture-negative. All false-positives were instances of latent TB. In 18 months of prospective EHR-based surveillance with this algorithm, seven additional cases of physician-suspected active TB were detected, including two patients with culture-negative disease. A review of state health department records revealed no cases missed by the algorithm.
Live, prospective TB surveillance using EHR data is feasible and promising.
电子健康记录 (EHR) 有可能改善结核病 (TB) 监测的完整性和及时性,相对于传统报告,特别是对于培养阴性疾病。我们报告了一种用于 EHR 数据的 TB 检测算法的开发和验证,随后在实时监测和报告系统中实施。
我们使用马萨诸塞州东部一家门诊实践的结构化电子数据来开发一种筛选算法,旨在实现经证实的活动性 TB 的 100%敏感性,同时为医师怀疑的疾病获得尽可能高的阳性预测值 (PPV)。我们在 16 年的回顾性电子数据中验证了该算法,然后在实时基于 EHR 的监测系统中实施了该算法。我们在 18 个月的前瞻性监测中评估了相对于传统报告的 PPV 和病例捕获的完整性。
最终的算法需要开具吡嗪酰胺处方、TB 的国际疾病分类,第九版 (ICD-9) 代码以及两种抗结核药物的处方,或 TB 的 ICD-9 代码和 TB 诊断测试的医嘱。在验证期间,该算法对医师怀疑的疾病具有 84%的 PPV(95%置信区间 78,88)。三分之一的确诊病例为培养阴性。所有假阳性都是潜伏性 TB 的实例。在使用该算法进行 18 个月的前瞻性基于 EHR 的监测中,还发现了另外 7 例医师怀疑的活动性 TB 病例,其中包括 2 例培养阴性疾病患者。对州卫生部门记录的审查显示,没有遗漏任何病例。
使用 EHR 数据进行实时、前瞻性 TB 监测是可行且有前途的。