Suppr超能文献

评估一种在电子健康记录数据中识别眼部疾病的算法。

Evaluation of an Algorithm for Identifying Ocular Conditions in Electronic Health Record Data.

机构信息

W. K. Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor.

Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor.

出版信息

JAMA Ophthalmol. 2019 May 1;137(5):491-497. doi: 10.1001/jamaophthalmol.2018.7051.

Abstract

IMPORTANCE

For research involving big data, researchers must accurately identify patients with ocular diseases or phenotypes of interest. Reliance on administrative billing codes alone for this purpose is limiting.

OBJECTIVE

To develop a method to accurately identify the presence or absence of ocular conditions of interest using electronic health record (EHR) data.

DESIGN, SETTING, AND PARTICIPANTS: This study is a retrospective analysis of the EHR data of patients (n = 122 339) in the Sight Outcomes Research Collaborative Ophthalmology Data Repository who received eye care at participating academic medical centers between August 1, 2012, and August 31, 2017. An algorithm that searches structured and unstructured (free-text) EHR data for conditions of interest was developed and then tested to determine how well it could detect the presence or absence of exfoliation syndrome (XFS). The algorithm was trained to search for evidence of XFS among a sample of patients with and without XFS (n = 200) by reviewing International Classification of Diseases, Ninth Revision or International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-9 or ICD-10) billing codes, the patient's problem list, and text within the ocular examination section and unstructured (free-text) data in the EHR. The likelihood that each patient had XFS was estimated using logistic least absolute shrinkage and selection operator (LASSO) regression. The EHR data of all patients were run through the algorithm to generate an XFS probability score for each patient. The algorithm was validated with review of EHRs by glaucoma specialists.

MAIN OUTCOMES AND MEASURES

Positive predictive value (PPV) and negative predictive value (NPV) of the algorithm were computed as the proportion of patients correctly classified with XFS or without XFS.

RESULTS

This study included 122 339 patients, with a mean (SD) age of 52.4 (25.1) years. Of these patients, 69 002 (56.4%) were female and 99 579 (81.4%) were white. The algorithm assigned a less than 10% probability of XFS for 121 085 patients (99.0%) as well as an XFS probability score of more than 75% for 543 patients (0.4%), more than 90% for 353 patients (0.3%), and more than 99% for 83 patients (0.07%). Validated by glaucoma specialists, the algorithm had a PPV of 95.0% (95% CI, 89.5%-97.7%) and an NPV of 100% (95% CI, 91.2%-100%). When there was ICD-9 or ICD-10 billing code documentation of XFS, in 86% or 96% of the records, respectively, evidence of XFS was also recorded elsewhere in the EHR. Conversely, when there was clinical examination or free-text evidence of XFS, it was documented with ICD-9 codes only approximately 40% of the time and even less often with ICD-10 codes.

CONCLUSIONS AND RELEVANCE

The algorithm developed, tested, and validated in this study appears to be better at identifying the presence or absence of XFS in EHR data than the conventional approach of assessing only billing codes; such an algorithm may enhance the ability of investigators to use EHR data to study patients with ocular diseases.

摘要

重要性

对于涉及大数据的研究,研究人员必须准确识别出具有眼部疾病或感兴趣表型的患者。仅依赖行政计费代码来达到这一目的是有限的。

目的

开发一种使用电子健康记录 (EHR) 数据准确识别感兴趣的眼部疾病存在或不存在的方法。

设计、设置和参与者:本研究是对 Sight Outcomes Research Collaborative Ophthalmology Data Repository 中 122339 名患者(接受过眼保健服务的患者)的 EHR 数据进行的回顾性分析,这些患者在 2012 年 8 月 1 日至 2017 年 8 月 31 日期间在参与的学术医疗中心接受治疗。开发了一种搜索感兴趣条件的结构化和非结构化(自由文本)EHR 数据的算法,然后对其进行测试,以确定其检测剥脱综合征 (XFS) 存在与否的效果。该算法通过查看患有和不患有 XFS 的患者(n=200)的国际疾病分类,第九修订版或国际疾病与相关健康问题统计分类,第十修订版(ICD-9 或 ICD-10)计费代码、患者的问题列表以及眼检查部分和 EHR 中的非结构化(自由文本)数据中的证据来训练搜索 XFS 的证据。使用逻辑最小绝对收缩和选择算子 (LASSO) 回归估计每位患者患有 XFS 的可能性。将所有患者的 EHR 数据输入算法,为每位患者生成 XFS 概率评分。该算法通过青光眼专家对 EHR 的审查进行验证。

主要结果和测量

该算法的阳性预测值 (PPV) 和阴性预测值 (NPV) 是通过计算正确分类为 XFS 或没有 XFS 的患者比例来计算的。

结果

本研究纳入了 122339 名患者,平均(标准差)年龄为 52.4(25.1)岁。这些患者中,69002 名(56.4%)为女性,99579 名(81.4%)为白人。该算法为 121085 名患者(99.0%)分配了不到 10%的 XFS 可能性,为 543 名患者(0.4%)分配了超过 75%的 XFS 概率评分,为 353 名患者(0.3%)分配了超过 90%的 XFS 概率评分,为 83 名患者(0.07%)分配了超过 99%的 XFS 概率评分。经过青光眼专家验证,该算法的 PPV 为 95.0%(95%CI,89.5%-97.7%),NPV 为 100%(95%CI,91.2%-100%)。当有 ICD-9 或 ICD-10 计费代码记录 XFS 时,分别在 86%或 96%的记录中,也在 EHR 的其他地方记录了 XFS 的证据。相反,当有临床检查或自由文本的 XFS 证据时,仅使用 ICD-9 代码记录了大约 40%的时间,使用 ICD-10 代码记录的时间甚至更少。

结论和相关性

本研究中开发、测试和验证的算法似乎比仅评估计费代码的传统方法更能准确识别 EHR 数据中 XFS 的存在或不存在;这种算法可能会增强研究人员使用 EHR 数据研究眼部疾病患者的能力。

相似文献

引用本文的文献

1
Development and Evaluation of a Computable Phenotype for Normal Tension Glaucoma.正常眼压性青光眼可计算表型的开发与评估
Ophthalmol Sci. 2025 Jun 18;5(6):100858. doi: 10.1016/j.xops.2025.100858. eCollection 2025 Nov-Dec.
4
Enhanced Phenotype Identification of Common Ocular Diseases in Real-World Datasets.真实世界数据集中常见眼病的增强型表型识别
Ophthalmol Sci. 2025 Jan 24;5(4):100717. doi: 10.1016/j.xops.2025.100717. eCollection 2025 Jul-Aug.

本文引用的文献

10
Pseudoexfoliation Syndrome.假性剥脱综合征
J Curr Glaucoma Pract. 2013 Sep-Dec;7(3):118-20. doi: 10.5005/jp-journals-10008-1148. Epub 2013 Sep 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验