Suppr超能文献

计算方法是使用稳态模型评估法在育龄妇女中确定胰岛素抵抗的关联和定义的重要决定因素。

Computational methods are significant determinants of the associations and definitions of insulin resistance using the homeostasis model assessment in women of reproductive age.

机构信息

Department of Pathology, Faculty of Medicine, Kuwait University, Kuwait.

出版信息

Clin Chem. 2011 Feb;57(2):279-85. doi: 10.1373/clinchem.2010.152025. Epub 2010 Dec 2.

Abstract

BACKGROUND

Insulin resistance (IR) plays an important role in the pathogenesis of polycystic ovary syndrome (PCOS), but identification of insulin-resistant individuals is difficult. The homeostasis model assessment (HOMA), a surrogate marker of IR, is available in 2 computational models: HOMA1-IR (formula) and HOMA2-IR (computer program), which differ in incorporated physiological assumptions. This study evaluates the associations of the 2 models as markers of IR, the metabolic syndrome (MS), and PCOS.

METHODS

Anthropometric, hormonal, and biochemical parameters were measured in 92 PCOS women and 110 controls. HOMA1 and HOMA2 were used to assess IR. Regression analyses were used to find the associations of the 2 models with different variables, MS, and PCOS.

RESULTS

The cutoff levels for definition of IR were HOMA1-IR ≥2.9 and HOMA2-IR ≥1.7. Mean HOMA1-IR (2.79) and HOMA2-IR (1.42) differed substantially. The difference (HOMA1-IR - HOMA2-IR) was significantly correlated with insulin, fasting plasma glucose, triglycerides, HDL cholesterol, waist circumference, leptin, and adiponectin (all P < 0.05). HOMA1-IR and HOMA2-IR were significantly associated with MS (odds ratio 5.7 and 4.2, respectively) and PCOS (odds ratio 3.7 and 3.5, respectively).

CONCLUSIONS

HOMA computational methods significantly affect the associations and cutoff values used for definition of IR. The correlations of the difference in the computational methods corroborate differences in captured physiological mechanisms. As precise identification of IR in PCOS patients is of practical importance, practitioners and researchers should be aware of these differences in the HOMA computational methods.

摘要

背景

胰岛素抵抗(IR)在多囊卵巢综合征(PCOS)的发病机制中起着重要作用,但识别胰岛素抵抗个体具有挑战性。稳态模型评估(HOMA)是 IR 的替代标志物,有 2 种计算模型:HOMA1-IR(公式)和 HOMA2-IR(计算机程序),它们在纳入的生理假设上有所不同。本研究评估了这两种模型作为 IR、代谢综合征(MS)和 PCOS 标志物的相关性。

方法

对 92 名 PCOS 女性和 110 名对照者进行了人体测量、激素和生化参数的测量。使用 HOMA1 和 HOMA2 来评估 IR。回归分析用于发现这两种模型与不同变量、MS 和 PCOS 的相关性。

结果

定义 IR 的截止值为 HOMA1-IR≥2.9 和 HOMA2-IR≥1.7。HOMA1-IR(2.79)和 HOMA2-IR(1.42)的平均值差异较大。差异(HOMA1-IR-HOMA2-IR)与胰岛素、空腹血糖、甘油三酯、高密度脂蛋白胆固醇、腰围、瘦素和脂联素显著相关(均 P<0.05)。HOMA1-IR 和 HOMA2-IR 与 MS(比值比分别为 5.7 和 4.2)和 PCOS(比值比分别为 3.7 和 3.5)显著相关。

结论

HOMA 计算方法显著影响用于定义 IR 的相关性和截止值。计算方法差异的相关性证实了所捕获的生理机制的差异。由于在 PCOS 患者中准确识别 IR 具有实际意义,因此临床医生和研究人员应该了解 HOMA 计算方法的这些差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验