King's College London, Department of Cardiology, Cardiovascular Division, The Rayne Institute, St. Thomas' Hospital, London SE1 7EH, UK.
Nitric Oxide. 2011 Aug 1;25(2):118-24. doi: 10.1016/j.niox.2010.11.005. Epub 2010 Dec 2.
Formation of nitric oxide and its derivative reactive nitrogen species during endotoxemia has been implicated in the pathogenesis of the associated cardiovascular dysfunction. This stress can promote nitrosative post-translational modifications of proteins that may alter their activity and contribute to dysregulation. We utilized the ascorbate-dependent biotin-switch method to assay protein S-nitrosylation and immunoblotted for tyrosine nitration to monitor changes in nitrosative protein oxidation during endotoxemia. Hearts from lipopolysaccharide (LPS)-treated rats showed no apparent variation in global protein S-nitrosylation, but this may be due to the poor sensitivity of the biotin-switch method. To sensitize our monitoring of protein S-nitrosylation we exposed isolated hearts to the efficient trans-nitrosylating agent nitrosocysteine (which generated a robust biotin-switch signal) and then identified a number of target proteins using mass spectrometry. We were then able to probe for these target proteins in affinity-capture preparations of S-nitrosylated proteins prepared from vehicle- or LPS-treated animals. Unexpectedly this showed a time-dependent loss in S-nitrosylation during sepsis, which we hypothesized, may be due to concomitant superoxide formation that may lower nitric oxide but simultaneously generate the tyrosine-nitrating agent peroxynitrite. Indeed, this was confirmed by immunoblotting for global tyrosine nitration, which increased time-dependently and temporally correlated with a decrease in mean arterial pressure. We assessed if tyrosine nitration was causative in lowering blood pressure using the putative peroxynitrite scavenger FeTPPS. However, FeTPPS was ineffective in reducing global protein nitration and actually exacerbated LPS-induced hypotension.
内毒素血症期间一氧化氮及其衍生的活性氮物种的形成与相关心血管功能障碍的发病机制有关。这种应激可以促进蛋白质的硝化翻译后修饰,可能改变它们的活性并导致失调。我们利用抗坏血酸依赖性生物素转换法测定蛋白质的 S-亚硝基化,并通过酪氨酸硝化免疫印迹监测内毒素血症期间硝化蛋白质氧化的变化。用脂多糖(LPS)处理的大鼠心脏中没有明显的整体蛋白质 S-亚硝基化变化,但这可能是由于生物素转换法的灵敏度较差。为了提高我们对蛋白质 S-亚硝基化的监测灵敏度,我们将分离的心脏暴露于有效的转硝化剂亚硝基半胱氨酸(产生强烈的生物素转换信号),然后使用质谱法鉴定了一些靶蛋白。然后,我们能够在从载体或 LPS 处理的动物中制备的 S-亚硝基化蛋白质的亲和捕获制剂中探测这些靶蛋白。出乎意料的是,这显示出在脓毒症期间 S-亚硝基化的时间依赖性丧失,我们假设,这可能是由于同时形成超氧化物,可能降低一氧化氮,但同时产生酪氨酸硝化剂过氧亚硝酸盐。事实上,这通过对整体酪氨酸硝化的免疫印迹得到了证实,酪氨酸硝化随时间呈时间依赖性增加,并与平均动脉压的降低呈时间相关性。我们使用假定的过氧亚硝酸盐清除剂 FeTPPS 评估酪氨酸硝化是否会导致血压降低。然而,FeTPPS 不能有效降低整体蛋白质硝化,实际上加剧了 LPS 诱导的低血压。