Suppr超能文献

通过 S-亚硝基谷胱甘肽还原酶减少心肌细胞 S-亚硝基化可预防脓毒症引起的心肌抑制。

Reduction of cardiomyocyte S-nitrosylation by S-nitrosoglutathione reductase protects against sepsis-induced myocardial depression.

机构信息

Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2013 Apr 15;304(8):H1134-46. doi: 10.1152/ajpheart.00887.2012. Epub 2013 Feb 15.

Abstract

Myocardial depression is an important contributor to morbidity and mortality in septic patients. Nitric oxide (NO) plays an important role in the development of septic cardiomyopathy, but also has protective effects. Recent evidence has indicated that NO exerts many of its downstream effects on the cardiovascular system via protein S-nitrosylation, which is negatively regulated by S-nitrosoglutathione reductase (GSNOR), an enzyme promoting denitrosylation. We tested the hypothesis that reducing cardiomyocyte S-nitrosylation by increasing GSNOR activity can improve myocardial dysfunction during sepsis. Therefore, we generated mice with a cardiomyocyte-specific overexpression of GSNOR (GSNOR-CMTg mice) and subjected them to endotoxic shock. Measurements of cardiac function in vivo and ex vivo showed that GSNOR-CMTg mice had a significantly improved cardiac function after lipopolysaccharide challenge (LPS, 50 mg/kg) compared with wild-type (WT) mice. Cardiomyocytes isolated from septic GSNOR-CMTg mice showed a corresponding improvement in contractility compared with WT cells. However, systolic Ca(2+) release was similarly depressed in both genotypes after LPS, indicating that GSNOR-CMTg cardiomyocytes have increased Ca(2+) sensitivity during sepsis. Parameters of inflammation were equally increased in LPS-treated hearts of both genotypes, and no compensatory changes in NO synthase expression levels were found in GSNOR-overexpressing hearts before or after LPS challenge. GSNOR overexpression however significantly reduced total cardiac protein S-nitrosylation during sepsis. Taken together, our results indicate that increasing the denitrosylation capacity of cardiomyocytes protects against sepsis-induced myocardial depression. Our findings suggest that specifically reducing protein S-nitrosylation during sepsis improves cardiac function by increasing cardiac myofilament sensitivity to Ca(2+).

摘要

心肌抑制是脓毒症患者发病率和死亡率的重要因素。一氧化氮(NO)在脓毒性心肌病的发展中起重要作用,但也具有保护作用。最近的证据表明,NO 通过蛋白质 S-亚硝基化发挥其对心血管系统的许多下游作用,而 S-亚硝基化还原酶(GSNOR)负调节 S-亚硝基化还原酶,促进去亚硝基化。我们检验了这样一个假设,即通过增加 GSNOR 活性减少心肌细胞的 S-亚硝基化可以改善脓毒症期间的心肌功能障碍。因此,我们生成了心肌细胞特异性过表达 GSNOR 的小鼠(GSNOR-CMTg 小鼠),并对其进行内毒素休克处理。体内和离体心脏功能测量显示,与野生型(WT)小鼠相比,GSNOR-CMTg 小鼠在脂多糖(LPS,50mg/kg)挑战后心脏功能明显改善。与 WT 细胞相比,从脓毒症 GSNOR-CMTg 小鼠分离的心肌细胞收缩力也相应改善。然而,LPS 后两种基因型的收缩期 Ca2+释放均明显降低,表明 GSNOR-CMTg 心肌细胞在脓毒症期间 Ca2+敏感性增加。两种基因型 LPS 处理的心脏炎症参数均增加,并且在 LPS 挑战前后 GSNOR 过表达心脏中均未发现一氧化氮合酶表达水平的代偿性变化。然而,GSNOR 过表达在脓毒症期间显著降低了总心脏蛋白 S-亚硝基化。总之,我们的研究结果表明,增加心肌细胞的去亚硝基化能力可预防脓毒症引起的心肌抑制。我们的研究结果表明,在脓毒症期间特异性减少蛋白质 S-亚硝基化可通过增加心肌肌丝对 Ca2+的敏感性来改善心脏功能。

相似文献

1
Reduction of cardiomyocyte S-nitrosylation by S-nitrosoglutathione reductase protects against sepsis-induced myocardial depression.
Am J Physiol Heart Circ Physiol. 2013 Apr 15;304(8):H1134-46. doi: 10.1152/ajpheart.00887.2012. Epub 2013 Feb 15.
2
Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function.
Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4314-9. doi: 10.1073/pnas.1113319109. Epub 2012 Feb 24.
4
Cardiomyocyte-specific overexpression of nitric oxide synthase 3 prevents myocardial dysfunction in murine models of septic shock.
Circ Res. 2007 Jan 5;100(1):130-9. doi: 10.1161/01.RES.0000253888.09574.7a. Epub 2006 Nov 30.
5
Hypoxia-induced changes in protein s-nitrosylation in female mouse brainstem.
Am J Respir Cell Mol Biol. 2015 Jan;52(1):37-45. doi: 10.1165/rcmb.2013-0359OC.
7
Improvement in Outcomes After Cardiac Arrest and Resuscitation by Inhibition of S-Nitrosoglutathione Reductase.
Circulation. 2019 Feb 5;139(6):815-827. doi: 10.1161/CIRCULATIONAHA.117.032488.

引用本文的文献

1
S-Nitrosylation in Cardiovascular Disorders: The State of the Art.
Biomolecules. 2025 Jul 24;15(8):1073. doi: 10.3390/biom15081073.
2
Cardiac-specific ITCH overexpression ameliorates septic cardiomyopathy inhibition of the NF-κB signaling pathway.
J Mol Cell Cardiol Plus. 2022 Nov 2;2:100018. doi: 10.1016/j.jmccpl.2022.100018. eCollection 2022 Dec.
3
Clinical effects of dexmedetomidine on patients with sepsis and myocardial injury.
Medicine (Baltimore). 2024 Oct 25;103(43):e40257. doi: 10.1097/MD.0000000000040257.
6
Moderate exercise-induced dynamics on key sepsis-associated signaling pathways in the liver.
Crit Care. 2023 Jul 5;27(1):266. doi: 10.1186/s13054-023-04551-1.
7
Cardiac Hypoxia Tolerance in Fish: From Functional Responses to Cell Signals.
Int J Mol Sci. 2023 Jan 11;24(2):1460. doi: 10.3390/ijms24021460.
8
ADH5-mediated NO bioactivity maintains metabolic homeostasis in brown adipose tissue.
Cell Rep. 2021 Nov 16;37(7):110003. doi: 10.1016/j.celrep.2021.110003.
9
Hypoxic and Thermal Stress: Many Ways Leading to the NOS/NO System in the Fish Heart.
Antioxidants (Basel). 2021 Aug 31;10(9):1401. doi: 10.3390/antiox10091401.
10
An Overview of Investigational and Experimental Drug Treatment Strategies for Marfan Syndrome.
J Exp Pharmacol. 2021 Aug 11;13:755-779. doi: 10.2147/JEP.S265271. eCollection 2021.

本文引用的文献

1
Measurement of S-nitrosylation occupancy in the myocardium with cysteine-reactive tandem mass tags: short communication.
Circ Res. 2012 Oct 26;111(10):1308-12. doi: 10.1161/CIRCRESAHA.112.271320. Epub 2012 Aug 3.
2
Soluble guanylyl cyclase is a target of angiotensin II-induced nitrosative stress in a hypertensive rat model.
Am J Physiol Heart Circ Physiol. 2012 Sep 1;303(5):H597-604. doi: 10.1152/ajpheart.00138.2012. Epub 2012 Jun 22.
3
Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function.
Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4314-9. doi: 10.1073/pnas.1113319109. Epub 2012 Feb 24.
4
Fructose diet treatment in mice induces fundamental disturbance of cardiomyocyte Ca2+ handling and myofilament responsiveness.
Am J Physiol Heart Circ Physiol. 2012 Feb 15;302(4):H964-72. doi: 10.1152/ajpheart.00797.2011. Epub 2011 Dec 23.
5
An integrated approach to assessing nitroso-redox balance in systemic inflammation.
Free Radic Biol Med. 2011 Sep 15;51(6):1137-45. doi: 10.1016/j.freeradbiomed.2011.06.012. Epub 2011 Jun 14.
6
The alpha1 isoform of soluble guanylate cyclase regulates cardiac contractility but is not required for ischemic preconditioning.
Basic Res Cardiol. 2011 Jun;106(4):635-43. doi: 10.1007/s00395-011-0167-y. Epub 2011 Mar 11.
8
Characterization of potential S-nitrosylation sites in the myocardium.
Am J Physiol Heart Circ Physiol. 2011 Apr;300(4):H1327-35. doi: 10.1152/ajpheart.00997.2010. Epub 2011 Jan 28.
9
Cardiac Z-disc signaling network.
J Biol Chem. 2011 Mar 25;286(12):9897-904. doi: 10.1074/jbc.R110.174268. Epub 2011 Jan 21.
10
Nitrosative protein oxidation is modulated during early endotoxemia.
Nitric Oxide. 2011 Aug 1;25(2):118-24. doi: 10.1016/j.niox.2010.11.005. Epub 2010 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验